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Estimates of the minimal necessary work of separation for mechanical separation processes and of the minimal
necessary heat consumption for heat-driven separation processes with given productivity are derived in this
paper. It is shown that for heat-driven processes the productivity is limited, and this limiting productivity is
estimated.

1. Introduction

The minimal amount of energy needed for separation a
mixture with a given composition can be estimated using
reversible thermodynamics. These estimates turn out to be very
loose and unrealistic. They also do not take into account kinetic
factors (laws and coefficients of heat and mass transfer,
productivity of the system, etc.). In this paper we derive
irreversible estimates of the work of separation that take into
account all these factors.

The majority of separation systems are open systems that
exchange mass and energy with the environment. If mass and
heat transfer coefficients (determined by the size and construc-
tion of the apparatus) are finite and if the productivity of the
system is finite then the processes in such systems are reversible.
The energy flows, the compositions of the mass flows, and the
productivity of the system are linked via the balance equations
of energy, mass, and entropy. The latter also includes entropy
production in the system. Minimal energy used for separation
corresponds to minimal entropy production in the system subject
to various constraints. This allows us to estimate this minimal
energy.1

There is a qualitative as well as a quantitative difference
between the reversible and irreversible estimates obtained in
this paper. For example, the irreversible estimate of the work
of separation for poor mixtures (where the concentration of one
of the components is close to one) tends to a finite nonzero
limit, which depends on the kinetics factors. The reversible work
of separation for such mixtures tends to zero. The reversible
estimate differs from the amount of energy needed in practice
for separation of poor mixtures by a factor of 105.2

For heat-driven separation processes the novel results obtained
in this paper include the estimate of the minimal heat consump-
tion as a function of kinetic factors and the thermodynamic limit
on the productivity of a heat-driven separation.

2. Thermodynamic Balances of Separation Processes and
the Link between Energy Consumption and Entropy
Production

Consider the system, shown in Figure 1, where the flow of
mixture with rate g0, compositionx0, temperatureT0, and

pressureP0 is separated into two flows with the corresponding
parametersgi, xi, Ti, Pi (i ) 1, 2). The flow of heatq+ with the
temperatureT+ can be supplied, and the flow of heatq- with
the temperatureT- can be removed. The mechanical work with
the rate (power)p can be supplied.

In centrifuging, membrane separation, and adsorption-
desorption cycles that are driven by pressure variations, no heat
is supplied/removed and only mechanical work is spent. In
absorption-desorption cycles, distillation, and so forth, no
mechanical work is spent, only heat is consumed (heat-driven
separation). In some cases the number of input and output flows
can be larger. As a rule one can still represent the system as an
assembly of separate blocks, whose structure is shown in Figure
1.

2.1. Heat-Driven Separation.Consider a heat-driven separa-
tion (p ) 0) and assume that each of the vectorsxi ) (xi1, ...,
xij, ..., xik), i ) 0, 1, 2, consists ofk components which denote
the molar fraction of thejth substance in theith flow. The
thermodynamic balance equations of mass, energy, and entropy
here take the following form

wherehi is the enthalpy of theith flow;

σ denotes entropy production. From eq 1, eq 2 follows thatg0

) g1 + g2. After elimination of g0 from eqs 3 and 4 and
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Figure 1. Simplified schematic of thermodynamic balances for
separation processes.

g0x0j - g1x1j - g2x2j ) 0, j ) 1,...,k (1)

∑
j)1

k

xij ) 1, i ) 0, 1, 2 (2)

q+ - q- + g0h0 - g1h1 - g2h2 ) 0 (3)

q+

T+
-

q-

T-
+ g0s0 - g1s1 - g2s2 + σ ) 0 (4)
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introduction of enthalpy increments∆h and entropy increment
∆s we get

Here,∆h0i ) h0 - hi, ∆s0i ) s0 - si (i ) 1, 2).
Elimination of q- using eq 5 and its substitution into eq 6

yields

and the flow of used heat for heat-driven separation is

The first term in the square brackets depends only on the
parameters of the input and output flows and represents the
reversible work of separation per unit of time (reversible power
of separation). The second term there represents the process
kinetics and corresponding energy dissipation.

For mixtures that are close to ideal gases and ideal solutions,
molar enthalpies and entropieshi andsi in the eqs 3 and 4 can
be expressed in terms of compositions and specific enthalpies
and entropies of the pure substances. We obtain for each of the
flows

whereR is the universal gas constant. The reversible energy
consumption here is

We denote here the Carnot efficiency of the ideal cycle of the
heat engine as

Condition 7 can be rewritten as

Here,p0 is the reversible power of separation that is equal to
the reversible flow of heat given by eq 9 multiplied by the
Carnot efficiency.

When eq 10 was derived we took into account only the
irreversibility σ of the separation process (the irreversibility of
the heat transfer was not taken into account). In reality heat
can be supplied/removed with a finite rate only irreversibly.

Any transformation of heat into work with finite heat transfer
coefficients and finite power is irreversible. This leads to a lower
efficiency than the Carnot efficiency. The closed form expres-
sion for this efficiency was obtained in ref 7. It depends on the
powerp and on heat transfer coefficients for heat supply and
heat removalR+ andR-. For the Newton (linear) law of heat
transfer it has the form

where it is assumed that there is constant contact of the working
body with the heat reservoirs and

It is easy to show that ifp f 0 thenηp tends to the Carnot
efficiency.

Substitution ofηp instead ofηC in eq 10 allows us to derive
a tighter estimate for the heat consumption in heat-driven
separation processes by finding the minimal possible entropy
productionσ subject to various constraints

where

Conditions 11-14 single out the area of thermodynamically
feasible heat-driven separation systems.

Expressions 9 and 10 and eq 7 can be further specified by
assuming the constancy of heat capacities, that the mixture is
binary, and so forth.

2.2. Mechanical Separation.Consider a separation system
that uses mechanical work with ratep. Assume that no heat is
supplied/removed (q+ ) q- ) 0) and that input and output flows
have the same temperatureT and the same pressure. Multiplica-
tion of eq 6 byT and subtraction of the result from the energy
balance (eq 5), where (q+ - q-) is replaced with the supplied
powerp, yields

Hereγi ) gi/g0.
After taking into account (eq 9) that the enthalpy increment

∆h0i in a mechanical separation is zero, we get

The first term in this expression represents the minimal power
for separation that corresponds to the reversible process (σ )
0). This power p0 is equal to the difference between the
reversible power for complete separation of the input flowp0

0

) -g0RT∑j x0j ln x0j and the combined reversible power of
separation of the output flowsp1

0 andp2
0.

q+ - q- + g1∆h01 + g2∆h02 ) 0 (5)

g2∆s02 + g1∆s01 +
q+

T+
-

q-

T-
+ σ ) 0 (6)

∑
i)1

2

gi(∆s0i -
∆h0i

T-
) + q+ ( 1

T+

-
1

T-
) + σ ) 0

q+ )
T+

T+ - T-
[∑
i)1

2

gi(∆s0iT- - ∆h0i) + σT-] (7)

∆h0i ) ∑
j)1

k

[x0jhj(T0, P0) - xijhj(Ti, Pi)]

∆s0i ) ∑
j)1

k

[x0jsj
0(T0, P0) - xijsj

0(Ti, Pi) -

R(x0j ln x0j - xij ln xij)], i ) 1, 2 (8)

q+
0 )

1

ηK
∑
i)1

2

gi∑
j)1

k

[[x0jsj
0(T0, P0) - xijsj

0(Ti, Pi) - R(x0j ln x0j -

xij ln xij)]T- + xijhj(Ti, Pi) - x0jhj(T0, P0)] (9)

ηC )
T+ - T-

T+

q+ ) 1
ηC

(p0 + σT-) (10)

ηp ) max
p
q+

) 1 - 1
2T+

(T+ + T- - 4p
R

-

x(T+ - T-)2 + (4p
R )2

- 8
p
R

(T+ + T-)) (11)

R )
4R+R-

R+ + R-
(12)

q+ g q+
min ) pmin

ηp(p
min, R, T+, T-)

(13)

pmin ) p0 + σminT- (14)

p ) Tσ + g0∑
i)1

2

γi(T∆s0i - ∆h0i) (15)

p ) g0RT[∑
i)1

2

γi∑
j)1

k

xij ln xij - ∑
j)1

k

x0j ln x0j] + Tσ ) p0 + Tσ

(16)
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Here

is the reversible power of separation of theith flow into pure
substances.

3. Minimal Work of Separation in Irreversible Processes

3.1. Assumptions and Problem Formulation.Assume that
the components of the input mixture are close to ideal gases or
ideal solutions. The chemical potential of theith component
can then be written in the following form

wherexi is the concentration of theith component.
First we consider a system that includes three elements (see

Figure 2), a reservoir with the time independent temperatureT,
pressureP, and vector of concentrationsx0 ) {x01, ..., x0k}
(therefore its chemical potentialµ0 is also time independent),
the finite capacity output subsystem with chemical potentialµ1

that depends on the current compositions of the mixture and of
the working body that has controllable values of chemical
potentialµ0

w andµ1
w, at the points of contact with reservoir and

output subsystem. At the time the intensive variables of the
output subsystem coincide with the values of the reservoir’s
intensive variables, and the number of moles in it is given and
equal to N0. At time τ the number of molesN(τ) and the
compositionx(τ) in the output subsystem are given. The mass
transfer coefficients between the reservoir and the working body
and the working body and the output subsystem are finite and
fixed. The minimal necessary work required for the separation
is sought.

We do not consider here how to implement the derived
optimal dependence of the chemical potential of the working
body because of two reasons. First, our main objective is to
derive a lower bound on the work of separation. However,
imposing constraints on feasible variations of chemical potential
would lead to an increase in energy consumption. Second, we
will demonstrate that for the majority of mass transfer laws the
optimal mass transfer flow is time independent, and its
implementation is straightforward.

The work of separation in an isothermal process for an
adiabatically insulated system can be found using the Stodola
formula in terms of the reversible workA0 and the entropy
increment∆S

The reversible work is equal to the increment of the system’s
internal energy. Since as a result of the process (N(τ) - N(0))
moles of mixture with the compositionx0 is removed from the
reservoir, and the energy of the output subsystem rises because
of the increase of the amount of moles in it fromN(0) to N(τ)
and its composition fromx0 to xτ, the total change of the

system’s internal energy is

and it is independent ofN(0). BecauseA0 is determined byN,
x(τ), x(0), the minimum ofA corresponds to the minimum of
the entropy increment

Because the working body’s parameters have the same values
at the beginning and at the end of a cycle

3.2. Optimal Solution. The problem of minimization of∆S
subject to constraints (eq 22) ong0i g 0, g1i g 0 becomes
simpler in a common case where the chemical potentials’
increments∆µ0i, ∆µ1i are unique functions of flowsg0i andg1i,
correspondingly. If processes are close to equilibrium then this
dependence is linear.

Assume

then the problems 21 and 22 can be decomposed into 2k
problems

whereσji ) gjiæji(gji) is the function that determines dissipation.
Problems (eq 23) are averaged nonlinear programming

problems. Their optimal solutionsgji
* 3 are either constants and

equal to

or switches between two so-called basic values on the interval
(0, τ), the solution (eq 24) corresponding to the case where the
convex envelope of the functionσji(gji) is lower than the value
of this function atgji

* . Characteristic forms of the function
σji(gji) for the constant and switching regimes are shown in
Figure 3.

Figure 2. Computational structure of the separation system with
reservoir.

pi
0(xi) ) -RTg0γi∑

j)1

k

xij ln xij, i ) 0, 1, 2 (17)

µi(T, P) ) µ0(T, P) + RT ln xi, i ) 1,...,k (18)

A ) A0 + T∆S (19)

Figure 3. Dependence of the entropy production on the rate for the
constant (a) and switching (b) solutions (g1i

* and g2i
* are the basic

values of the rate).

A0 ) N(τ)∑
i)1

k

∆µi ) N(τ)RT∑
i)1

k

[xi(τ) ln xi(τ) - xi0 ln xi0]

(20)

∆S)
1

T
∫0

τ ∑
i)1

k

[g0i(µ0i - µi
w) + g1i(µi

w - µ1i)] dt

)
1

T
∫0

τ ∑
i)1

k

(g0i∆µ0i + g1i∆µ1i) dt (21)

∫0

τ
gi0 dt ) ∫0

τ
gi1 dt (22)

N(τ)xi(τ) - N(0)xi(0) ) ∆(Nxi), i ) 1, 2,...,k

∆µ0i ) æ0i(g0i), ∆µ1i ) æ1i(g1i)

∆Sji ) ∫0

τ
σji(gji) dt f min /∫0

τ
gji di ) ∆(Nxi) j ) 0, 1,

i ) 1, 2, ...,k (23)

gji
* ) g1i

* )
∆(Nxi)

τ
(24)
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If the functionσij is concave then the optimal rategji is always
constant. Let us calculate the second derivative ofσ on g (we
omit subscripts for simplicity). If it is positive then the constancy
of the rate in the optimal process is guaranteed.

The first term in this expression is always positive because the
chemical potentials’ difference is the driving force of mass
transfer and monotonically depends on the flow. For the majority
of laws of mass transfer the inequality (eq 25) holds. In
particular, it holds if the flow of mass transfer is proportional
to the difference of chemical potentials in any positive degree.

Consider mass transfer flow that depends linearly on the
chemical potential difference for alli, j. Then

It is clear that the conditions (eq 25) hold and the optimal rates
of flows obey equalities 24.

Equalities 24 hold for any nonswitching solution. The minimal
increment of the entropy production for such solution is

and the minimal work of separation is

The optimal rates are determined by the initial and final states
which allows us to specify the estimate (eq 28).

Near equilibrium the flows obey Onsanger’s kinetics (eq 26),
and from eq 28 it follows that

is the equivalent mass transfer coefficient on theith component
and the minimal entropy production is

The lower bound for the average power of separation is

p0 ) A0/τ is the reversible power of separation.
If

then expressions 29 and 32 take the form

where

Note that the irreversible estimate of the work of separation
(eq 33) does not tend to zero for poor mixtures when the
concentration of one of the components tends to one (Figure
4).

If system includes not one but a number of output subsystems
then it is clear that the estimate for the minimal work of
separation is equal to the sum of the estimates for each
subsystem.

The superscriptj here denotes the subsystems.
3.3. Separation of a System with Finite Capacity intom

Subsystems.Consider a system that is shown in Figure 5. Its
initial state is described by the vector of concentrationsx0, the
number of moles of the mixtureN0, and its final state by the
number of molesNh j, j ) 1, ...,m in each of the subsystems and
their concentrations,xj. The mass balances yields

Figure 4. Reversible (A0) and irreversible (Ar) estimates of the minimal
work of separation of binary mixture as functions of key component’s
concentrations.

Figure 5. Separation of the system with finite capacity onm
subsystems.

Amin ) A0 +
N2

τ
∑
i)1

k xi
2(τ)

Ri

(33)

pmin ) p0 + g2 ∑
i)1

k xi
2(τ)

Ri

(34)

A0 ) NRT∑
i)1

k

[xi(τ) ln xi(τ) - xi ln xi] (35)

Amin ) ∑
j)1

A min
j , pmin ) ∑

j)1

p min
j (36)

∑
j)1

m

Nh j ) N0 (37)

∑
j)1

m

Nh jxjji ) N0x0i, i ) 1, 2, ...,k

σ′′(g) ) 2æ′(g) + gæ′′(g) g 0 (25)

gji ) Rji∆µji w æji )
gji

Rji
(26)

∆Smin ) ∑
i,j

∆Sji
min ) τ∑

i,j

σji(∆(Nxi)

τ ) (27)

Amin ) A0 + τT∑
i,j

σji(∆(Nxi)

τ ) (28)

Amin ) A0 + τ∑
i)1

k

gi
2( 1

R0i

+
1

R1i
) ) A0 +

1

τ
∑
i)1

k ∆2(Nxi)

Ri

(29)

Ri )
R0iR1i

R0i + R1i
(30)

σmin )
1

Tτ2
∑
i)1

k ∆2(Nxi)

Ri

(31)

pmin )
Amin

τ
)

A0

τ
+

1

τ2
∑
i)1

k ∆2(Nxi)

Ri

(32)

N(0) ) 0, ∆(Nxi) ) Nxi(τ)
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The work in the reversible separation process here is

The reversible work of separation is equal to the difference of
the reversible work of separation of the initial mixture into pure
components and the reversible work of separation for mixtures
in each of the subsystems.

We again assume that flowsgj have componentsgji propor-
tional to the difference of the chemical potential of the
subsystem and the working body with the coefficientRji. Here,
the condition of minimal work of separation corresponds to the
condition of flow constancy

Here,Rj ji is the equivalent mass transfer coefficient calculated
using eq 30 for the flow into thejth output subsystem of theith
component. Similarly as was done above for the system with
the reservoir and one finite capacity output subsystem and flows
proportional to the final concentrations (eq 39), these concentra-
tions in the output subsystems are time independent and equal
to xjj, correspondingly, and the number of molesNh j(t) depends
linearly on time. The powerp here is constant

The minimal work of separation for the mixture with concentra-
tionsx0 into m subsystems with concentrationsxji over the time
τ is

Here,γj ) Nj/N0, Rj ij ) RjiR0i/(R0i + Rji).
The first term here coincides with the reversible work of

separationAr
0 of the mixture ofN0 moles with concentrationx0

into subsystems with number of molesNh j and concentrations
xjj. The second term takes into account irreversibility of the
process.Ar decreases monotonically and tends toAr

0 when
process durationτ and mass transfer coefficientRj ij increases.

3.4. Example.Consider separation of the binary mixture into
pure components in timeτ. In this caseN1 ) x0N0, N2 )
(1 - x0)N0, wherex0 is the concentration of the key component,
xj11 ) xj22 ) 1. From the formula 42 we get

The estimate (eq 43) was derived in ref 8 by solving the problem
of optimal separation of the binary mixture in the given timeτ
in Van’t Hoff’s thought experiment with movable pistons and

semitransparent membrane whereRj11 and Rj22 are the perme-
ability coefficients on the first and second component. If flows
do not depend explicitly on the chemical potentials’ differentials,
for example, are proportional to the concentrations’ differential,
then an estimate similar to the one obtained above can be
constructed by solving the following auxiliary nonlinear pro-
gramming problem

Here, (P0
i , Pi) are partial pressures of the components in

contacting subsystems that depend on the chemical potentials’
differentials∆µi. The flowgi depends on the same differentials.
Minimums in these problems are sought for different values of
constantgi > 0 and nonpositiveP0

i and Pi. We denote the
minimal values of the objective in each of these problems
∆µi

min(gi) as ∆µi
*(gi). This dependence can be used in the

estimate (eq 23) of the irreversible work of separation.

3.5. Example. Assume ∆µ ) RT ln(P0/P), g(P0, P) )
(P0 - P)/R, and 0< P < Pmax. Let us expressP0 in terms of
g andP:

∆µ ) RT ln(Rg/P + 1) attains its minimum atP ) Pmax ∀g.
Therefore,∆µi

*(gi) ) RT ln(Rigi/Pimax + 1).

4. Potential Application of Obtained Estimates

We will illustrate the possibilities of the application of the
derived estimates.

4.1. Estimate of the Power of Separation in a Continuous
Separation System.Consider a continuous separation system
with the input flowg0 with concentrationx0 andmoutput flows
gj(j ) 1, ...,m) with concentrationsxj ) {xj0, xj1, ...,xjk}, (Figure
6. Here, the temperatures on the input and output flows are close
to each other.

Equation 41 allows us to estimate the minimal power required
for continuous separation in such system

where

Figure 6. Schematic of a continuous separation system.

∆µi(P0
i , Pi) f min

P0
i , Pi

/gi(P0
i , Pi) ) gi, i ) 1, 2, ... (44)

P0i ) Rigi + Pi, i ) 1, 2

pmin ) ∑
j)1

m

p0j + g0
2∑

j)1

m

γj
2∑

i)1

k xji
2

Rji

(45)

γj )
gj

g0

g 0, ∑
j)1

m

γj ) 1 (46)

p0j ) g0γjRT∑
i)1

k

[xji ln xji - x0i ln x0i] ) γjMj(g0, xj) (47)

Ar
0(x0,xj) ) RT[∑

j)1

m

Nh j∑
i

xjji ln xjji - N0∑
i

x0i ln x0i] (38)

) Ar0
0 (x0, N0) - ∑

j)1

m

Arj
0(xjj, Nh j)

gji )
Nh jxjji

τ
, i ) 1, 2, ...,k, j ) 1, ...,m (39)

∆µji )
gji

Rj ji
, j ) 0, 1,...,m (40)

p )
RT

τ
∑
j)1

m

Nh j ∑
i

xjji ln
xjji

x0i

+
1

τ2
∑
j)1

m

Nj
2 ∑

i

xjji
2/Rj ji (41)

Ar ) RTN0 ∑
j)1

m

γj ∑
i

xjji ln
xjji

x0i

+
N0

2

τ
∑
j)1

m

γj
2 ∑

i

xjji
2/Rj ji (42)

Ar ) -RTN0(x0 ln x0 + (1 - x0) ln (1 - x0)) +

N0
2

τ ( x0
2

Rj11
+

(1 - x0)
2

Rj22
) ) Ar

0(x0) +
N0

2

τ ( x0
2

Rj11
+

(1 - x0)
2

Rj22
) (43)
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Mass balance equations yield

The number of conditions (eq 48) isk - 1, because the
concentration of one of the components is determined by the
conditions (eq 46).

If the number of flowsm > k, and their compositions are
given, then the removal fractions can be chosen in such a way
that the power of separation is minimal subject to constraints
(eqs 46 and 48). The Lagrange function of this problem is

here

L is the concave function onγj, and its conditions of stationarity
determine the flows that minimize the power for separation for
a given flow’s compositions

We havek linear equations forλ0 andλi

4.2. Example.Assumem ) 3, k ) 2, g0 ) 1 mol/s,T )
300 K, and the compositions and transfer coefficients are

From eq 47 we obtainM1 ) 910,M2 ) 197,M3 ) 910, andr1

) 205, r2 ) 580, r3 ) 137.

Equations 51 and 52 forλ-multipliers take the form

We obtainλ0 ) 894, λ1 ) 183. Their substitution in eq 50
yields γ1

* ) 0.36, γ2
* ) 0.64, γ3

* ) 0 and the corresponding
estimate for the minimal irreversible power of separation (eq
45) is

4.3. The Selection of the Separation Sequence for a
Multicomponent Mixture. In practice, separation of multi-
component mixtures is often realized via a sequence of binary
separations. So, a three-component mixture is first separated
into two flows, one of which does not contain one of the
components. The second flow is then separated into two
unicomponent flows. The reversible work of separation (that
corresponds to the powerp0) does not depend on the sequence
of separation, becausep0 is determined by the rates and
compositions of the input and output flows of the system as a
whole. The irreversible component of the power∆p in eq 45
depends on the sequence of separation and can be used to find
the optimal one.

Consider a three-component mixture with concentrationx0

) (x01, x02, x03), and rateg0 we set to one. We denote the mass
transfer coefficients at the first and second stages of separation
asR1 andR2. They depend on the construction of the apparatus.
First, we assume for simplicity that these coefficients do not
depend on the mixture’s composition (in the general case they
do depend on it). We consider irreversible power consumption
for two cases:

(a) The first component is first separated, then the second
and the third are separated.

(b) The second component is separated, and then the first
and the third are separated.

We assume that the separation at each stage is complete. We
get up to the constant multiplier

The first two terms in this sum represent the loss of irrevers-
ibility during the first stage of separation. Forg0 ) 1 and
complete separation the output rates of this stageg1 andg2 are
x01 and (x02 + x03), correspondingly.

Consider the first stage of case a forg0 ) 1 and complete
separation and view the second and third component as the same
substance with the output ratex02 + x03 ) 1 - x01. The
irreversible expenses (eq 45) are

1
2[λ0 - M1

r1
+

λ0 - M2

r2
+

λ0 - M3

r3
+

λ1 (x11

r1
+

x21

r2
+

x31

r3
)] ) 1

1
2[x11(λ0 - M1

r1
+

λ1x11

r1
) + x21 (λ0 - M2

r2
+

λ1x21

r2
) +

x31(λ0 - M3

r3
+

λ1x31

r3
)] ) x01

pmin ) 718 J/S

∆pa ) ∆pa1 + ∆pa2 ) x01
2 /R1 +

(x02 + x03)
2

R1
+ (x02 + x03)

2 +

(x02
2 /R2 + x03

2 /R3) (53)

∆pa1 )
x01

2

R1
+

(1 - x01)
2

R1
)

2x01
2 + 1 - 2x01

R1
(54)

∑
j)1

m

γjxji ) x0i, i ) 1, ...,k - 1,

∑
i)1

k

xji ) 1, j ) 0, ...,m (48)

L ) ∑
j)1

m {γjMj + γj
2rj - λ0γj - ∑

i)1

k-1

λiγjxji} (49)

rj(g0, xj) ) g0
2∑

i)1

k xji

Rji

γj
* )

λ0 - Mj + ∑
i)1

k-1

λixji

2rj

, j ) 1, ...,m (50)

1

2[∑
j)1

m λ0 - Mj

rj

+ ∑
i)1

k-1

λi ∑
j)1

m xji

rj
] ) 1 (51)

1

2[∑
j)1

m

xji(λ0 - Mj

rj

+
1

rj
∑
i)1

k-1

λixji)] ) x0i i ) 1, ...,k - 1 (52)

x01 ) x02 ) 0.5

x11 ) 0.9; x12 ) 0.1; Rj11 ) Rj12 ) 0.004 mol2/(J s)

x21 ) 0.3; x22 ) 0.7; Rj21 ) Rj22 ) 0.01 mol2/(J s)

x31 ) 0.1; x32 ) 0.9; Rj31 ) Rj32 ) 0.06 mol2/(J s)
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When the second flow is separated into two flows their rates
are

and the irreversible power is

The combined irreversible power is

Similarly in case b we get

The differential between these two values is

If ∆pab > 0, then sequence b is preferable.
Note that it is not possible to formulate the general rule to

choose the optimal separation sequence for a multicomponent
mixture, in particular, on the basis of the reversible work of
separation. It is necessary here to compare irreversible losses
for each sequence.

4.4. Example.Assume that the composition of the input three-
component mixture isx01 ) 0.6, x02 ) 0.3, x03 ) 1 - x01 -
x02; the mass transfer coefficients areR1 ) 0.01 mol2/(J s),R2

) 0.02 mol2/(J s). From eq 55 we find that the difference in
power between sequences a and b is

The comparison of the combined minimal irreversible power
for the same initial data shows that the power for separation of
a mixture using sequence b is higher than the power used for
sequence a, that is,∆pab < 0.

Thus, sequence a is preferable, and it is better to perform the
complete separation by separating the first component.

5. Limiting Productivity and Minimal Heat Consumption
for a Heat-Driven Separation

In many separation processes a heat engine is used to create
the differential of the chemical potential between the working
body and the reservoirs (the driving force of mass transfer).
Here, the working body is heated during contact with one
reservoir and is cooled during contact with the other reservoir.
One can represent the heat-driven separation system as a
transformer of heat into the work of separation that generates
powerp, consumes heat flow from hot reservoirg+, and rejects
flow g- to the cold reservoir. Heat transfer coefficients for
contacts with the hot and cold reservoirR+ andR- are fixed.

It was shown in refs 5 and 6 that the potential of the direct
transformation of heat to work is limited and the maximal
generated power for the working body with the distributed
parameters is

In this expressionRj ) (R+R-)/(R+ + R-) is the equivalent heat
transfer coefficient for continuous contact with the reservoirs;

Rj ) (R+R-)/(xR+ + xR-)2 is the equivalent heat transfer
coefficient for sequential contact.

The maximal power determines the heat flow consumed from
the hot reservoir. Further increase of heat consumption for given
values of heat transfer coefficients requires an increase of the
temperature differential between the reservoirs and the working
body and reduces the power.

The dependence of the used power on the productivity of
irreversible separation processes is monotonic (eq 45). There-
fore, the limiting productivity of heat-driven separation processes
corresponds to the maximal possible power produced by
transformation of heat into work. Further increase of heat
consumptionq+ reduces power and therefore reduces the
productivity of separation process.

For the Newton (linear) law of mass transfer and heat-work
transformer the dependence of the power on the heat used7 is

Here,ηC ) (T+ - T-)/T+ is the Carnot efficiency,T+ andT-
are the hot and cold reservoir’s temperatures, andRj ) (R+R-)/
(R+ + R-) is the equivalent heat transfer coefficient.

The minimal heat consumptionq+ as a function of productiv-
ity g0 for a heat-driven separation can be obtained by substituting
expression 57 instead ofp in the right-hand side of eq 45. The
result holds forp e pmax and therefore forg0 e g0max. The
duration here must not exceed the maximal possible duration.

Substitution of the right-hand side of eq 56 instead ofp in
eq 45 yields the maximal possible productivity of the system
(whereRj is chosen according to the type of contact between
the transformer and reservoir). We denote

We obtain

and the limiting productivity is

Formulas 58 and 59 allow us to estimate the limiting
productivity of a heat-driven separation process for Newton’s
laws of heat transfer between the working body and reservoirs
and mass transfer proportional to the differentials in chemical
potentials (mass transfer is close to isothermal with the
temperatureT).

5.1. Example. Consider heat-driven monoethanamide gas
cleansing. One of the components is absorbed by the cold
solution from the input gas mixture. This solution is then heated

g22 )
x02

(1 - x01)
, g23 )

x03

(1 - x01)

∆pa2 ) 1

R2(1 - x01)
2
(x02

2 + x03
2 )

∆pa(x01, x02) )
2x01

2 - 2x01 + 1

R1
+

x02
2 + (1 - x01 - x02)

2

R2(1 - x01)
2

∆pb(x01, x02) )
2x02

2 - 2x02 + 1

R1
+

x01
2 + (1 - x01 - x02)

2

R2(1 - x02)
2

∆pab ) ∆pa - ∆pb ) 2
R1

[(x01
2 - x02

2 ) - (x01 - x02)] +

1
R2(1 - x01)(1 - x02)

[(1 - x02)
2(x02

2 + x03
2 ) -

(1 - x01)
2(x01

2 + x03
3 )] (55)

∆pab ) ∆pa - ∆pb ) -7.82 J

pmax ) Rj (xT+ - xT-)2
(56)

q+(p) ) p
ηp

) 2p

( p
RjT+

+ ηk) + x( p
RjT+

+ ηC)2
- 4p

RjT+

(57)

B ) RT∑
j

γj∑
i

xji ln
xji

x0i

, D ) T∑
j

γj
2∑

i

xji
2

Rji

(58)

pmax ) Rj(xT+ - xT-)2 ) Bg0max+ Dg0max
2

g0max)
-B + xB2 + 4RjD(xT+ - xT-)2

2D
(59)
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and this component is vaporized. The input mixture’s parameters
areTh ) 350 K, the key component’s molar concentrationx )
0.5, the rate of mixtureg0 ) 5 mol/s. The temperatures of heat
supplied/removed are correspondinglyTh ) 400 K, Tc ) 300
K, and the heat transfer coefficients areR+ ) 8.368 kJ/(s K)
and R- ) 16.736 kJ/(s K). The concentrations of the key
components in the output flows arex1 ) 0.9,x2 ) 0.1; the mass
transfer coefficients for each of the components (integral values
over the whole contact surface) for the hot and cold reservoir’s
contacts areR1 ) 0.07 mol2/(kg s), R2 ) 0.03 mol2/(kg s).

Because the solution circulates and is heated and cooled in
turns, the limiting power for transformation of heat into work
is given by the expression 56 with the correspondingRj

The power for separation is given by eq 45.
We have

The minimal work required for a system with Onsanger’s
equations are (see eq 45)

Thus,p ) p0 + ∆p ) 12.636 kJ/s< pmax. The work needed
for separation does not exceed the maximal possible value for
given heat transfer coefficients.

Let us estimate the minimal heat consumption. From eq 57
we get

If the temperatures of the input and output flows are not the

same then the minimal energy required for separation can be
estimated using the thermodynamic balance equations 13 and
14 and the expression forσmin (eq 31).

6. Conclusion

New irreversible estimates of the in-principle limiting pos-
sibilities of separation processes are derived in this paper. They
take into account the unavoidable irreversibility caused by the
finite rate of flows and heat and mass transfer coefficients. They
also allow us to estimate the limiting productivity of a heat-
driven separation and to find the most energy efficient separa-
tion sequence/regime of separation for a multicomponent
mixture.
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I

xji
2

Rji
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kJ

s
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