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Estimates of the minimal necessary work of separation for mechanical separation processes and of the minimal
necessary heat consumption for heat-driven separation processes with given productivity are derived in this
paper. It is shown that for heat-driven processes the productivity is limited, and this limiting productivity is

estimated.
1. Introduction q_TT_
- . a4 D
The minimal amount of energy needed for separation a ro |92 2
mixture with a given composition can be estimated using xR T %2 By
reversible thermodynamics. These estimates turn out to be very q;[ * ??‘Pg

loose and unrealistic. They also do not take into account kinetic
factors (laws and coefficients of heat and mass transfer, Figure 1. Simplified schematic of thermodynamic balances for
productivity of the system, etc.). In this paper we derive separation processes.
irreversible estimates of the work of separation that take into
account all these factors. ) ) ) )
The majority of separation systems are open systems thatPressure is separate_d into two flows with the corre_spondlng
exchange mass and energy with the environment. If mass andP2r@meters;, x, Ti, Pi (i = 1, 2). The flow of heag; with the
heat transfer coefficients (determined by the size and construc-l€Mperaturer;. can be supplied, and the flow of.ha;p.t with .
tion of the apparatus) are finite and if the productivity of the the temperaturg-. can be remO\_/ed. The mechanical work with
system is finite then the processes in such systems are reversiblet.he rate (p_owe_rp can be supplied. . .
The energy flows, the compositions of the mass flows, and the In cgntrlfuglng, membrarje separation, and. quorptlon
productivity of the system are linked via the balance equations plesorptpn cycles that are driven by pressure varlayons, no heat
of energy, mass, and entropy. The latter also includes entropyIS supp_||ed/remove_d and only me_cha_nlcal work is spent. In
production in the system. Minimal energy used for separation 2PSOrptior-desorption cycles, distillation, and so forth, no

corresponds to minimal entropy production in the system subject mechamcal \I/vork IS spent, orr]ﬂy heakt) IS cfolnsumedd(heat-d;llven
to various constraints. This allows us to estimate this minimal S€Paration). In some cases the number of input and output flows
energy? can be larger. As a rule one can still represent the system as an

There is a qualitative as well as a quantitative difference assembly of separate blocks, whose structure is shown in Figure

between the reversible and irreversible estimates obtained in™
this paper. For example, the irreversible estimate of the work
of separation for poor mixtures (where the concentration of one
of the components is close to one) tends to a finite nonzero
limit, which depends on the kinetics factors. The reversible work
of separation for such mixtures tends to zero. The reversible
estimate differs from the amount of energy needed in practice
for separation of poor mixtures by a factor of°20

For heat-driven separation processes the novel results obtained
in this paper include the estimate of the minimal heat consump- K
tion as a function of kinetic factors and the thermodynamic limit ZX'“ =1, i=0,1,2 2)
on the productivity of a heat-driven separation. & !

2.1. Heat-Driven Separation.Consider a heat-driven separa-
tion (p = 0) and assume that each of the vectars (X, ...,
Xij, ..., Xik), I = 0, 1, 2, consists ok components which denote
the molar fraction of thgth substance in théh flow. The
thermodynamic balance equations of mass, energy, and entropy
here take the following form

90X — 01Xy — 9% =0, j=1,.k (1)

2. Thermodynamic Balances of Separation Processes and g, —9- +9gohy — 9;h; —g,h, =0 3
the Link between Energy Consumption and Entropy
Production whereh; is the enthalpy of théth flow;
Consider the system, shown in Figure 1, where the flow of q. 9
mixture with rate go, compositionx,, temperatureT,, and T_+ - T—+ U5~ 98— 9,5, +0=0 4)
* Corresponding author. E-mail:Vladimir.Kazakov@uts.edu.au. .
t Russian Academy of Science. E-mail: tsirlin@sarc.botik.ru. o denotes entropy production. From eq 1, eq 2 follows that
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introduction of enthalpy incrementsh and entropy increment
As we get

dy — d- + g;Ahy; + g,Ahy, =0 5)
q q-
GAS, + GiASy + — 7+ +o=0 (6)
+ —

Here,Ahgi = hy — h, Assi = s — s (i = 1, 2).
Elimination of g- using eq 5 and its substitution into eq 6
yields

and the flow of used heat for heat-driven separation is

T, [2

0i(As, T_ — Ahy) + oT_

a.+ (7)

T,-T.
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Any transformation of heat into work with finite heat transfer
coefficients and finite power is irreversible. This leads to a lower
efficiency than the Carnot efficiency. The closed form expres-
sion for this efficiency was obtained in ref 7. It depends on the
powerp and on heat transfer coefficients for heat supply and
heat removab; ando.—. For the Newton (linear) law of heat
transfer it has the form

P _A( _dp_
My maxq—+ 1 2_|_+T++T_ o

\/(T+ - T )+ (%))2 — 80EL(T+ + T,)) (11)

where it is assumed that there is constant contact of the working
body with the heat reservoirs and

4o, 0
o=

S ot ol (12)

It is easy to show that ip — O theny, tends to the Carnot

The first term in the square brackets depends only on the efficiency.

parameters of the input and output flows and represents the Substitution ofy, instead ofyjc in eq 10 allows us to derive

reversible work of separation per unit of time (reversible power a tighter estimate for the heat consumption in heat-driven

of separation). The second term there represents the processeparation processes by finding the minimal possible entropy

kinetics and corresponding energy dissipation. productiono subject to various constraints
For mixtures that are close to ideal gases and ideal solutions, _

molar enthalpies and entropibsands in the eqs 3 and 4 can min _ p™"

be expressed in terms of compositions and specific enthalpies 0+ = Qs (pmin 0T, T) (13)
and entropies of the pure substances. We obtain for each of the "o T =
flows where
k . .
A%:ZMﬂﬂ”@—MMRRH p™" = p®+ o™M"T_ (14)
J:

k

Asy = Z[xqq"(To, Po) = %;8'(T;, P) —
[=
R(X IN X — % Inx)], i1=1,2 (8)

whereR is the universal gas constant. The reversible energy

consumption here is
2 k
0

1
q: 277_ g [[Xoj%o(To' Po) — Xij%O(Tiv P) — R In X —
K= =

X; I X)1T_ + x;h(T;, P) = x5h(To, Po)l (9)

We denote here the Carnot efficiency of the ideal cycle of the

heat engine as
T, -7
77 =
C T+

Condition 7 can be rewritten as

1
q. ="+ oT) (10)
Mc

Here,p? is the reversible power of separation that is equal to

Conditions 1114 single out the area of thermodynamically
feasible heat-driven separation systems.

Expressions 9 and 10 and eq 7 can be further specified by
assuming the constancy of heat capacities, that the mixture is
binary, and so forth.

2.2. Mechanical Separation.Consider a separation system
that uses mechanical work with rgie Assume that no heat is
supplied/removedy” = g~ = 0) and that input and output flows
have the same temperatdrend the same pressure. Multiplica-
tion of eq 6 byT and subtraction of the result from the energy
balance (eq 5), where{ — g-) is replaced with the supplied
powerp, yields

2
p=To+ gy ) 7i(TAs; — Ahy)

(15)

Hereyi = gi/go.
After taking into account (eq 9) that the enthalpy increment
Ahg in @ mechanical separation is zero, we get

2 k k
WwR{Vi&m&— X 1N X
0 £ J; J ) ]; ) )

+To=p’+To
(16)

the reversible flow of heat given by eq 9 multiplied by the The first term in this expression represents the minimal power

Carnot efficiency.

for separation that corresponds to the reversible proeess (

When eq 10 was derived we took into account only the 0). This powerp? is equal to the difference between the
irreversibility o of the separation process (the irreversibility of ~reversible power for complete separation of the input fgjw
the heat transfer was not taken into account). In reality heat = —goRT}j Xg In Xg and the combined reversible power of
can be supplied/removed with a finite rate only irreversibly. separation of the output flowﬁ and pg.
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Figure 2. Computational structure of the separation system with " 'b e

reservoir. Figure 3. Dependence of the entropy production on the rate for the

constant (a) and switching (b) solutiong*li(and g;i are the basic

Here values of the rate).

k
. system’s internal energy is
Py = _RTQ)ViZXij Inx;, 1=0,1,2 17) Y i
= k k

is the reversible power of separation of title flow into pure Ao= N(T)Iz Aui = N(T)RTI: [Xi(z) In % (7) = X0 I Xl

substances. (20)

3. Minimal Work of Separation in Irreversible Processes and it is independent dfi(0). Becauseé, is determined by,
X(1), X(0), the minimum ofA corresponds to the minimum of

3.1. Assumptions and Problem Formulation Assume that the entropy increment

the components of the input mixture are close to ideal gases or

ideal solutions. The chemical potential of tith component 1 k

can then be written in the following form AS=— ﬁ; (900 — MEN) + gli(‘u}"’ — uy)] dt
T =

(M P)=uy(T,P)+RTInx, i=1..,k (18)

1 .,
wherex; is the concentration of thith component. T Jo / (Qoi At + Gy t (21)
First we consider a system that includes three elements (see =

Figure 2), a reservoir with the time independent temperafure  Because the working body’s parameters have the same values

pressureP, and vector of concentrationg = {Xo1, ..., Xok} at the beginning and at the end of a cycle
(therefore its chemical potentiab is also time independent),
the finite capacity output subsystem with chemical potemtial ‘/(:gio dt = jggil dt (22)

that depends on the current compositions of the mixture and of

the working body that has controllable values of chemical

potentialuy anduy, at the points of contact with reservoir and

output subsystem. At the time the intensive variables of the

output subsystem coincide with the values of the reservoir's

intensive variables, and the number of moles in it is given and

equal toNp. At time t the number of moledN(r) and the

compositionx(z) in the output subsystem are given. The mass

transfer coefficients between the reservoir and the working body

and the working body and the output subsystem are finite and

fixed. The minimal necessary work required for the separation

is sought. — —
We gdo not consider here how to implement the derived At = ¢oi(Ga): - Aty = ¢1(G)

optimal dependence of the chemical potential of the working ihen the problems 21 and 22 can be decomposed ikto 2

body because of two reasons. First, our main objective is to problems

derive a lower bound on the work of separation. However,

imposing constraints on feasible variations of chemical potential T — T _

would lead to an increase in energy consumption. Second, weAﬁi = Laji(gji) dt — min /J; gidi=A(Nx) j=0,1,

will demonstrate that for the majority of mass transfer laws the i=1,2, ..k (23)

optimal mass transfer flow is time independent, and its ) . . o
implementation is straightforward. whereo; = g;ig;i(gj) is the function that determines dissipation.

The work of separation in an isothermal process for an  Problems (eq 23) are averaged nonlinear programming

adiabatically insulated system can be found using the StodolaProblems. Their optimal solutiorg; * are either constants and
formula in terms of the reversible work, and the entropy ~ €qual to
incrementAS

N(D)x(z) — N(O(0) = A(NX), i=1,2,..k

3.2. Optimal Solution. The problem of minimization oAS
subject to constraints (eq 22) ag = O, g = O becomes
simpler in a common case where the chemical potentials’
incrementxAuo;, Auai are unique functions of flowgg andgy;,
correspondingly. If processes are close to equilibrium then this
dependence is linear.

Assume

.« ANX)
A=A, + TAS (19) 9 =0u=— (24)

The reversible work is equal to the increment of the system’s or switches between two so-called basic values on the interval
internal energy. Since as a result of the procé¥s)(— N(0)) (0, 7), the solution (eq 24) corresponding to the case where the
moles of mixture with the compositiox is removed from the ~ convex envelope of the functiar(g;) is lower than the value
reservoir, and the energy of the output subsystem rises becausef this function atg;. Characteristic forms of the function

of the increase of the amount of moles in it fra¥0) to N(7) oji(g;i) for the constant and switching regimes are shown in
and its composition fromxy to x,, the total change of the  Figure 3.
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If the functiong;; is concave then the optimal raggis always
constant. Let us calculate the second derivative oh g (we
omit subscripts for simplicity). If it is positive then the constancy
of the rate in the optimal process is guaranteed.

0"(9) =2¢'(9) + 9¢"(9) = 0 (25)

The first term in this expression is always positive because the Figure 4. Reversible A% and irreversible4;) estimates of the minimal
chemical potentia|s’ difference is the driving force of mass work of separation of binary mixture as functions of key component’s
transfer and monotonically depends on the flow. For the majority concentrations.
of laws of mass transfer the inequality (eq 25) holds. In
particular, it holds if the flow of mass transfer is proportional
to the difference of chemical potentials in any positive degree.

Consider mass transfer flow that depends linearly on the
chemical potential difference for all j. Then

X

g..
Oi = oA = @5 = a_l_l_ (26)
i Figure 5. Separation of the system with finite capacity om
subsystems.
Itis clear that the conditions (eq 25) hold and the optimal rates
of flows obey equalities 24. then expressions 29 and 32 take the form
Equalities 24 hold for any nonswitching solution. The minimal
increment of the entropy production for such solution is N xiz(r)
Anin=Rot— ) — (33)
in in A(N)q) " AO T 1= a‘i
AS™ = ZASIT] :‘L'Z(Tji T (27)
] ]
, LX)
and the minimal work of separation is Pmin=Pt 9 »— (34)
1= (ll
A(NX)
Anin=Ro T TTZUH L (28) where

The optimal rates are determined by the initial and final states K

which allows us to specify the estimate (eq 28). Ao =NRT ) [x(7) In x(z) — x In x] (35)
Near equilibrium the flows obey Onsanger’s kinetics (eq 26), =

and from eq 28 it follows that
Note that the irreversible estimate of the work of separation

K 1 1 1K AZ(N ) (eq 33) does not tend to zero for poor mixtures when the
A=A+ 912 —t|=A _Z — (29) Zoncentratlon of one of the components tends to one (Figure
=1 \Ooi Oy 1= e ).
If system includes not one but a number of output subsystems
_ 0L 0L then it is clear that the estimate for the minimal work of
Qi Zm (30) separation is equal to the sum of the estimates for each
o subsystem.
is the equivalent mass transfer coefficient onithecomponent j i
and the minimal entropy production is Anin = ZA min' Pmin = ZP min (36)
1= 1=
2
o = i K AT(NX) (31) The superscript here denotes the subsystems.
min ™7a 3.3. Separation of a System with Finite Capacity intam

SubsystemsConsider a system that is shown in Figure 5. Its
initial state is described by the vector of concentratirgshe
number of moles of the mixturllp, and its final state by the
number of moled\;, j = 1, ...,min each of the subsystems and
their concentrationsy;. The mass balances yields

The lower bound for the average power of separation is

Awin Ao 1 X A*(NX)
pmin=_=_+_ (32)
T

2 —
T = m

. . . =Ny (37)
po = Ad/T is the reversible power of separation. =
If

_ ) = Nx N,
N(0)=0, A(Nx) = Nx(7) 2
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The work in the reversible separation process here is

A(xoX) = RT[ZN,‘Z)_SW In%; — Nozxm In XOi] (38)

= Aol No) = > Aj(%, N)
oo, Mo ,Z 15 1N
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Figure 6. Schematic of a continuous separation system.

The reversible work of separation is equal to the difference of semitransparent membrane wheérg and ay, are the perme-

the reversible work of separation of the initial mixture into pure

ability coefficients on the first and second component. If flows

components and the reversible work of separation for mixtures do not depend explicitly on the chemical potentials’ differentials,

in each of the subsystems.

We again assume that flovgs have componentg; propor-
tional to the difference of the chemical potential of the
subsystem and the working body with the coefficieptHere,
the condition of minimal work of separation corresponds to the
condition of flow constancy

g ='TX" i=1,2,..k j=1,...m (39)

L

Auy==, j=0,1,..m (40)

i

Here,q; is the equivalent mass transfer coefficient calculated
using eq 30 for the flow into thgh output subsystem of thh

for example, are proportional to the concentrations’ differential,
then an estimate similar to the one obtained above can be
constructed by solving the following auxiliary nonlinear pro-
gramming problem
Aw;(Ps, P) — i=1,2,... (44)

min/gi(Pio' P) =g,
Pb, Pi

Here, Pio, P)) are partial pressures of the components in
contacting subsystems that depend on the chemical potentials’
differentialsAui. The flowg; depends on the same differentials.
Minimums in these problems are sought for different values of
constantg, > 0 and nonpositiveP‘O and P;. We denote the
minimal values of the objective in each of these problems

component. Similarly as was done above for the system with Aui"(@) as Aw;(g). This dependence can be used in the
the reservoir and one finite capacity output subsystem and flowsestimate (eq 23) of the irreversible work of separation.

proportional to the final concentrations (eq 39), these concentra-
tions in the output subsystems are time independent and equa(P, —

to X, correspondingly, and the number of molét) depends
linearly on time. The powep here is constant

m B )_(ji 1 m L
— 2 Nj szl' In Q—FE;NJZ szﬁlaji

The minimal work of separation for the mixture with concentra-
tionsXp into m subsystems with concentrationover the time
Tis

(41)

l % Ngm
A =RTN, ;VJ IZ)_(ji In E + = J;VJZ Z)?l%/aji (42)

Here,y; = Ni/No, 0 = otji ol (0toi + ).

The first term here coincides with the reversible work of
separation. of the mixture ofNo moles with concentratior
into subsystems with number of molds and concentrations
%. The second term takes into account irreversibility of the
process.A; decreases monotonically and tendsAE) when
process duratiom and mass transfer coefficiedyj increases.

3.4. Example.Consider separation of the binary mixture into
pure components in time. In this caseN; = xoNo, N2
(1 — x0)No, Wherexg is the concentration of the key component,
X11 = X2 = 1. From the formula 42 we get

A = —RTNX In %5 + (1 = %) In (1 — X)) +
ﬁi(ﬁ? (1-%) N3¢ | @ Xo))
T (_’~11+ 0y, Ar( )T 0’~11+ 0y, 43)

The estimate (eq 43) was derived in ref 8 by solving the problem

of optimal separation of the binary mixture in the given time
in Van't Hoff's thought experiment with movable pistons and

3.5. Example. Assume Au = RT In(Po/P), g(Po, P) =
P)/a, and 0< P < Pnax Let us expres® in terms of
g andP:

Po=o0+ P, i=1,2
Au = RTIn(ag/P + 1) attains its minimum aP = Ppnax 0g.
Therefore Au; (g) = RTIN(04Gi/Pimax + 1).

4. Potential Application of Obtained Estimates

We will illustrate the possibilities of the application of the
derived estimates.

4.1. Estimate of the Power of Separation in a Continuous
Separation SystemConsider a continuous separation system
with the input flowgp with concentrationg andm output flows
gi( = 1, ...,m) with concentrationg; = { X0, X1, ..., Xk}, (Figure
6. Here, the temperatures on the input and output flows are close
to each other.

Equation 41 allows us to estimate the minimal power required
for continuous separation in such system

m m k)(‘2
Prin= Y P+ Gy V[ Y — (45)
min J;OJ O];JI:all

where

(46)

9 m
% =

k
Po = gijRTZ[xﬁ N = %5 In %] = ¥;M;(Go, %) (47)
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Mass balance equations yield

Zijji =X0i, i= l, ...,k— 1,
=

j=0,..m (48)

%i =1,

The number of conditions (eq 48) is — 1, because the

concentration of one of the components is determined by the

conditions (eq 46).
If the number of flowsm > k, and their compositions are

given, then the removal fractions can be chosen in such a way
that the power of separation is minimal subject to constraints

(egs 46 and 48). The Lagrange function of this problem is

m k=1
L= [VJM,' + ijrj —Aoyj — Z’li‘ijji] (49)
i= i=

here

k X
(9o X) = o

= (X'JI

L is the concave function o), and its conditions of stationarity
determine the flows that minimize the power for separation for
a given flow’s compositions

k—1

Ao = Mj+ 3 A
¥ =2—rjl_' j=1,..,m (50)
We havek linear equations foiy and;
m Ay — M k1l mx
Z Z (51)
- . k=1
%lixﬁ o W +r—1]|Z,1ixﬁ) =%y i=1,..k-1 (52

4.2. Example.Assumem = 3,k = 2, go = 1 mol/s, T =
300 K, and the compositions and transfer coefficients are

Xo1 = X2 = 0.5

=0.9; x,=0.1; &, =0d,,=0.004 mof/(Js)

%1 =0.3; X, =0.7; 0, = Gy, =0.01 mof/(Js)
0.06 mof/(J s)

51 =0.1, X;,=0.9;, 05, =05,=

From eq 47 we obtaiM; = 910,M, = 197,M3 = 910, andr;
= 205, Iy = 580, 3 = 137.
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Equations 51 and 52 for-multipliers take the form

1.10 M, lo_Mz_i_lo_Ms
2 r, ry
Xy Xop X
. rfa I
Ao— My AX Ao— My AgX
;’Xn( 0 1y 11)+X21( 0 2, %t 21)+
2 ry ry ry ry

Ao = Mg | AyXgy .
Xl + r = Xo1
3 3

We obtainio = 894,41, = 183. Their substitution in eq 50
yields y; = 0.36,y, = 0.64,y, = 0 and the corresponding
estimate for the minimal irreversible power of separation (eq
45) is

P = 718 J/S

4.3. The Selection of the Separation Sequence for a
Multicomponent Mixture. In practice, separation of multi-
component mixtures is often realized via a sequence of binary
separations. So, a three-component mixture is first separated
into two flows, one of which does not contain one of the
components. The second flow is then separated into two
unicomponent flows. The reversible work of separation (that
corresponds to the powgg) does not depend on the sequence
of separation, becauspy is determined by the rates and
compositions of the input and output flows of the system as a
whole. The irreversible component of the powsp in eq 45
depends on the sequence of separation and can be used to find
the optimal one.

Consider a three-component mixture with concentrakgn
= (Xo1, X02, X03), and rategp we set to one. We denote the mass
transfer coefficients at the first and second stages of separation
asay ando,. They depend on the construction of the apparatus.
First, we assume for simplicity that these coefficients do not
depend on the mixture’s composition (in the general case they
do depend on it). We consider irreversible power consumption
for two cases:

(a) The first component is first separated, then the second
and the third are separated.

(b) The second component is separated, and then the first
and the third are separated.

We assume that the separation at each stage is complete. We
get up to the constant multiplier

+ %9’
—1 + (Xop T Xo9)” +

(G0, + Xd0) (53)

The first two terms in this sum represent the loss of irrevers-
ibility during the first stage of separation. Fgp = 1 and
complete separation the output rates of this stgagendg, are

Xo1 and oz + Xog), correspondingly.

Consider the first stage of case a fly = 1 and complete
separation and view the second and third component as the same
substance with the output rate, + X3 = 1 — Xo1. The
irreversible expenses (eq 45) are

(1~ %)?

oy

Ap, = Apy t+ Apy, =

Xy

2X§1+1_2X01

Ap )

_I_
Q4

a1 = (54)
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When the second flow is separated into two flows their rates
are

o, = Xo2 O = Xo3
22 (1_)(01), 23 (1_)(01)
and the irreversible power is
1 2
Apy,=—"—X,+
pa2 (12(1 . X01)2(X32 X03)

The combined irreversible power is

2X(2)1_ 2o, T 1+X(2)2+ (1- X01_X02)2
Oy a,(1— X01)2

Apa(XOP XOZ) =

Similarly in case b we get

2X(2)2_ 2o T 1+X81+ (1 =% — X02)2
Rl a,(1— on)z

The differential between these two values is

Apy(Xo1, Xo2) =

Apa = Ap, — AP, =§l[(xél — %)~ (X — %] +
1 M1 — v \2(s2 _
@ = wld %02 0%+ %9
(1 — %)’ (%61 + %591 (55)

If Apap > O, then sequence b is preferable.
Note that it is not possible to formulate the general rule to

J. Phys. Chem. B, Vol. 108, No. 19, 2008041

It was shown in refs 5 and 6 that the potential of the direct
transformation of heat to work is limited and the maximal
generated power for the working body with the distributed
parameters is

P = /T, = VT |

In this expressiom = (o.+a-)/(a+ + o) is the equivalent heat
transfer coefficient for continuous contact with the reservoirs;

o= (a+a)/(«/(_x T x/&_)z is the equivalent heat transfer
coefficient fol sequential contact.

The maximal power determines the heat flow consumed from
the hot reservoir. Further increase of heat consumption for given
values of heat transfer coefficients requires an increase of the
temperature differential between the reservoirs and the working
body and reduces the power.

The dependence of the used power on the productivity of
irreversible separation processes is monotonic (eq 45). There-
fore, the limiting productivity of heat-driven separation processes
corresponds to the maximal possible power produced by
transformation of heat into work. Further increase of heat
consumptionqg+ reduces power and therefore reduces the
productivity of separation process.

For the Newton (linear) law of mass transfer and hewdrk
transformer the dependence of the power on the heaf ised
am=L=

! 2 (57)
p p p 2 4p
) e e et

aT,
Here,nc = (T+ — T-)/T4 is the Carnot efficiencyT+ andT—
are the hot and cold reservoir's temperatures,@#nd(o-0-)/
(a4 + o) is the equivalent heat transfer coefficient.

(56)

choose the optimal separation sequence for a multicomponent The minimal heat consumptiap- as a function of productiv-

mixture, in particular, on the basis of the reversible work of

ity go for a heat-driven separation can be obtained by substituting

separation. It is necessary here to compare irreversible lossegXpression 57 instead pfin the right-hand side of eq 45. The

for each sequence.

4.4. Example. Assume that the composition of the input three-
component mixture i%o; = 0.6,Xp2 = 0.3, %03 =1 — Xo1 —
Xoz; the mass transfer coefficients axg = 0.01 mo#/(J s), a2
= 0.02 mo¥/(J s). From eq 55 we find that the difference in
power between sequences a and b is

APy, = Ap, — Ap, = —7.82J

The comparison of the combined minimal irreversible power

result holds forp < pmax and therefore folgy < QGomax The

duration here must not exceed the maximal possible duration.
Substitution of the right-hand side of eq 56 insteacoh

eq 45 yields the maximal possible productivity of the system

(wherea is chosen according to the type of contact between

the transformer and reservoir). We denote

B=RTY 5% In ﬁ, D= Tnyzﬁ (58)
T 4 Xoi T T

for the same initial data shows that the power for separation of \we obtain

a mixture using sequence b is higher than the power used for

sequence a, that ig\pap < 0.

Thus, sequence a is preferable, and it is better to perform the

complete separation by separating the first component.

5. Limiting Productivity and Minimal Heat Consumption
for a Heat-Driven Separation

Prax= Ay Ts = V/T-)* = Blymax + DG

and the limiting productivity is

—B+\/BZ+4GD(JT—+—JT—)2

2D

(59)

gOmax =

In many separation processes a heat engine is used to create
the differential of the chemical potential between the working ~ Formulas 58 and 59 allow us to estimate the limiting
body and the reservoirs (the driving force of mass transfer). productivity of a heat-driven separation process for Newton's
Here, the working body is heated during contact with one laws of heat transfer between the working body and reservoirs
reservoir and is cooled during contact with the other reservoir. and mass transfer proportional to the differentials in chemical
One can represent the heat-driven separation system as g@otentials (mass transfer is close to isothermal with the
transformer of heat into the work of separation that generatestemperaturer).

powerp, consumes heat flow from hot reservgir, and rejects
flow g- to the cold reservoir. Heat transfer coefficients for
contacts with the hot and cold reservair ando.— are fixed.

5.1. Example. Consider heat-driven monoethanamide gas
cleansing. One of the components is absorbed by the cold
solution from the input gas mixture. This solution is then heated
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and this component is vaporized. The input mixture’s parameterssame then the minimal energy required for separation can be
areT = 350 K, the key component’s molar concentratiosr estimated using the thermodynamic balance equations 13 and
0.5, the rate of mixturgy = 5 mol/s. The temperatures of heat 14 and the expression fe™" (eq 31).

supplied/removed are correspondindly= 400 K, T, = 300

K, and the heat transfer coefficients ate = 8.368 kJ/(s K)
and a- = 16.736 kJ/(s K). The concentrations of the key

components in the output flows axg= 0.9,x, = 0.1; the mass New irreversible estimates of the in-principle limiting pos-
transfer coefficients for each of the components (integral values gjyjjities of separation processes are derived in this paper. They
over the whole contact surface) for the hot and cold reservoir's {ake into account the unavoidable irreversibility caused by the
contacts arey = 0.07 mot/(kg s), o = 0.03 mob/(kg s). _ finite rate of flows and heat and mass transfer coefficients. They
Because the solution circulates and is heated and cooled iNglso allow us to estimate the limiting productivity of a heat-

turns, the limiting power for transformation of heat into work  yiven separation and to find the most energy efficient separa-

6. Conclusion

is given by the expression 56 with the corresponding tion sequence/regime of separation for a multicomponent
KJ mixture.
Pmax = 20711
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