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Abstract

In this paper extremal problems that include averaging operation
in constraints and objective are considered. The relaxation caused
by a replacement of a problem without averaging with a problem that
includes averaging is formally defined and investigated. Canonical form
for nonlinear programming problem with averaging is constructed and
its conditions of optimality are derived. It is shown how optimality
conditions for optimal control problems with various types of objectives
and constraints can be derived using its averaged relaxation.
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1 Introduction

One of the main approaches to solution of an extremal problem is
by replacing it with some other (auxiliary) extremal problem with a
larger set of feasible solutions. There are a number of cases when this
approach is used.

The first case occurs when a solution of the auxiliary problem is
simpler than a solution of the original problem, the conditions in the
auxiliary problem depend on some parameters and, for some values of
these parameters, the optimal solution or optimal value of the auxiliary
and original problems are the same [1]. The best known examples of
this approach are the use of penalty functions to reduce constrained to
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unconstrained optimization and the sufficient conditions of optimality
for optimal control problems that are based on Krotov’s lemma [2].

The second common case when the replacement of the original prob-
lem with its averaged relaxation is used is when there is no certainty
that a solution of the original problem exists. If the optimial solution
of an auxiliary problem with a larger feasible set is found and it turns
out to be non-feasible in the original problem then it often can be
approximated by some feasible sequence with an arbitrary accuracy.
Sliding regimes in optimal control are the best known examples of this
case. If the solution of an auxiliary problem turns out to be feasible
with respect to the conditions of the original problem then it is also a
solution of the original problem.

And finally it is possible that a problem with an enlarged set of
feasible solutions could be interesting by itself, the objective then being
to investigate whether its solution belongs to some subset of its feasible
solutions.

First we consider the following definition of the extension of the
extremal problem, which was given in [1]. Extremal problem B is
called an extension of the original problem A (or an extended problem
A) [1] is the following two conditions hold:
1. The sets of the feasible solutions of the problems A and B relay to
each other as

DB ⊃ DA. (1.1)

where DA and DB are the feasible sets of the problems A and B cor-
respondingly.
2. The optimality criterion IB of the problem B coincides with opti-
mality criterion of the problem A on the set DA

IB(x) = IA(x), x ∈ DA. (1.2)

¿From (1.1) and (1.2) it follows that the values of the original and
the extended problems IA(x∗

A) and IB(x∗
B) obey the following inequal-

ity
I∗A = IA(x∗

A) ≤ I∗B = I∗B(x∗
B), (1.3)

where x∗
A and x∗

B are the solutions of the problems A and B, and I∗A
and I∗B are the values of these problems.

A number of extremal problems’ formulations, in addition to vec-
tor and functional variables, includes their average values or average
values of the functions that depend on these variables [3], [4]. Later
we will demonstrate that a problem that includes averaging can be
viewed as an extention (relaxation) of an extremal problem without
averaging. We will compare this way of constructing extention of an
extremal problem with the other ways of doing this for the nonlinear
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programming problem and for the variational problem with the scalar
argument. In order to do this we we have to generalize the definition
of extension (1.1)-(1.2).

All the theorems and lemmas in the main body of this paper are
presented without proofs. The proofs are then given in the Appendix.

2 Definition of an extension

Let us call the problem

f(x) → max, x ∈ D (2.1)

the original problem, whose solution is the vector x∗ ∈ D ⊃ V ⊃ Rn.
Assume that x ∈ V is a random variable, its probability density

distribution is P (x) and this distribution is to be chosen. The evalu-
ation of the quality of P (x) can be carried out using some criterion.
In particular, P (x) can be chosen from the condition of function f(x)
maximum, where x is the ensemble average value of x. In this case the
problem of how to choose P (x) takes the form

f(x) = f
[∫

V

xP (x)dx
] → max

P (x)
(2.2)

subject to constraints∫
V

P (x)dx = 1, P (x) ≥ 0. (2.3)

The other way of evaluating the quality of a probability distribution is
via the average value of the function f over the ensemble of solutions

f(x) =
∫

V

f(x)P (x)dx → max
P (x)

(2.4)

subject to the same conditions (2.3). Here it is not required that each
element of the sample belongs to D. It is sufficient that, for example,
the average value of x belongs to D∫

V

xP (x)dx ∈ D. (2.5)

If the problem (2.1) is convex and its optimal solution is x∗ then
the optimal solutions P ∗(x) in problems (2.2) and (2.4) are the same.
In this case

P ∗(x) = δ(x − x∗), (2.6)
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where δ is Dirac function. The values of all problems (2.1), (2.2) and
(2.4) are also the same. In the general case, the values of the problems
(2.2) or (2.5) and the problem (2.1) obey the inequality similar to (1.3).

Since the feasible set of the problems (2.2) and (2.4) does not belong
to Rn, the condition (1.1) is meaningless.

Let us change the definition of an extension of extremal problem.
First we introduce the definition of the isomorphism of two extremal
problem.
Problems A0 and A1 are isomorphic (identical with respect to solutions)
if it is possible to find such one-to-one mapping between their sets of
feasible solutions that from the inequality

IA(y) ≥ IA(z), (y, z) ∈ DA (2.7)

follows that
IA1(y1) ≥ IA1(z1), (y1, z1) ∈ DA1 , (2.8)

where y1 and z1 correspond to y and z. Here the feasible sets DA0 and
DA1 can belong to the different spaces.

The equivalent class Ā is defined as a set of all the problems which
are isomorphic to the problem A.

Assume that the element y0 can not be improved on some subset
∆A0 ⊃ DA0 (that is, y0 obeys necessary conditions of optimality of
the problem A0). Then the element y0

1 which corresponds to y0 obeys
the necessary conditions of optimality of the problem A1. Therefore,
the optimality conditions for all the problems that belong to Ā are
obtained if they are obtained for any one problem from this class.

Now we can give the following generalized definition of an extended
problem: the problem B is called an extension of the problem A if the
conditions (1.1) and (1.2) hold for any problem from the class A.

For example, according to this definition, it is possible to establish
a one-to-one correspondence between the elements x̃ of the set D and
the set of probablity distributions D1 of the form

Px̃(x) = δ(x − x̃). (2.9)

Note, that the values of f(x) in (2.1), f(x) in (2.2) and f(x) in (2.4)
coinside here on the corresponding elements. Thus, the inequalities
(2.7) and (2.8) hold and the problem (2.1) is equivalent to the problems
(2.2) and (2.4), in which the feasible set consists of distributions (2.9)
and x ∈ D.

The problems (2.2) and (2.4), where P (x) obeys only the conditions
(2.3), (2.5) are extensions of the problem with solution in the form
(2.9). Therefore they are also extensions for the problem (2.1).
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3 Averaged relaxations of nonlinear pro-
gramming problem. Structure of the opti-

mal solution.

Consider the case when the problem A is the following nonlinear pro-
gramming problem (NP) (we assumed for simplicity that all the con-
straints here are the equality constraints)

f0(x) → max
f(x) = 0, x ∈ Vx,

(3.1)

where x ∈ Rn, f0 is a scalar function and f is an m-dimensional vector
function, m < n. The space Vx is closed and bounded.

Let us introduce the following problem

f0 =
1
T

∫ T

0

f0(x(t))dt → max
x(t)

,

f =
1
T

∫ T

0

f(x(t))dt = 0,

x(t) ∈ Vx ⊂ Rn, ∀t ∈ [0, T ].

(3.2)

The solution of the problem (3.2) is sought in the class of measurable
functions.

The problem (3.2) is a relaxation of the problem (3.1) because its
feasible set includes the subset of functions, which are constant for
almost all t ∈ [0, T ], and for each vector x0 ∈ Vx in the problem (3.1)
there is fuction x(t) = x0.

For each function x(t) it is possible to construct the probability

measure µ(y) =
1
T

µ{t : x(t) ≤ y}, where µZ is the Lebesgue measure

of the set Z. In terms of this probability measure the problem (3.2) can
be rewritten in the form

f0 =
∫

Vx

f0(x)dµ(x) → max
µ(x)

,

f =
∫

Vx

f(x)dµ(x) = 0.
(3.3)

or, after introducing the density of the measure Pi(x) =
dµi

dxi
, as

f0 =
∫

Vx

f0(x)P (x)dx → max
P (x)

f =
∫

Vx

f(x)P (x)dx = 0.
(3.4)

5



In the points where the measure µ(x) has a discontinuity of the
first kind its density has a δ function component. From the properties
of the function µ(x) it follows that the solution of the problem (3.4)
must obey the conditions (2.3).

The problem (3.4) is a relaxation of the problem (3.1). We shall
call it the averaged nonlinear programming problem and denote as
NP . There are infinitely many functions x∗(t) in problem (3.1) which
correspond to the single solution of the problem (3.4) P (x) = P ∗(x).
The only exception is the case when P ∗(x) = δ(x− x0). Then x∗(t) =
x0.

The following statement 3.1 is true:
1. The optimal solution of NP problem P ∗(x) has the following form

P ∗(x) =
m∑

ν=0

γνδ(x − xν) (3.5)

where

γν ≥ 0,

m∑
ν=0

γν = 1. (3.6)

2. A non-zero vector of Lagrange multipliers λ = (λ0, ...λm) can be
found such that at points xν the function

R =
m∑

ν=0

λjfj(x) (3.7)

has its global maximum with respect to x ∈ Vx.
The points xν are called the basic values of x. If the optimal solution of
NP problem as a function of time x(t) exists, then it switches from one
basic value to another, being equal to each of them during γν fraction
of the total duration of the process T .

The averaging in NP problem can be done not for all variables, but
for part of them only. Let us divide the variables of the problem (3.1)
into two groups - deterministic x and randomized u. The averaging is
done only with respect to u. The NP

u
problem has the following form

f0(x, u)
u → max

x,p(u)
,

f(x, u)
u

= 0.
(3.8)

Here

fj(x, u)
u

=
1
T

∫ T

0

fj(x, u(t))dt =
∫

Vu

fj(x, u)P (u)du. (3.9)

P (u) ≥ 0;
∫

Vu

P (u)du = 1.
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It is assumed that functions fj are continues with respect to u and
continuously differentiable on x. The optimality conditions for the
problem (3.8) take the following form
Statement 2.2:
1. The optimal distribution of the randomized variable has the following
form

P ∗(u) =
m∑

ν=0

γνδ(u − uν), (3.10)

γν ≥ 0,
m∑

ν=0

γν = 1.

2. A non-zero vector λ = (λ0, ...λm) can be found such that the

Lagrange function R =
m∑

j=0

λjfj(x, u), which is computed using this λ,

can not be improved locally with respect to the deterministic variables
and has global maximum on randomized variables on the set Vu at each
of the basic points uν :

δ

δx

{ m∑
ν=0

γνR(x, uν)
}

δx ≤ 0.

uν = arg max
u∈Vu

R(λ, x∗, u), ν = 0, m.
(3.11)

here δx is a variation that is allowed by the constraints x ∈ Vx

A large number of different versions of NP problem exist, because,
for example, not all the constraints may depend on both deterministic
and randomized variables; and the problem can include not only the
averaging of the functions, but also the functions of the averaged val-
ues of the time-dependent variables, etc. Therefore it does not make
sense to derive optimality conditions for each one of these versions.
It is much more reasonable to write down the canonical form of the
average extension of NP problem and to derive its necessary condi-
tions of optimality. The statements 2.1 and 2.2 will follow from these
conditions.

The canonical form of the averaged extension of the NP problem
has the form

F0

[
f(x, u), x

]
→ max (3.12)

subject to constraints

Fj

[
f(x, u), x)

]
= 0, j = 1, r; x ∈ Vx, (3.13)

the overline f corresponds to the averaging on u over the closed and
bounded set Vu. The dimensionality of the vector-function f is m,
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function F is continuously differentiable on all of its arguments, and f
is continues on u and continuously differentiable on x.

Theorem 3.3 (The optimality conditions of the canonical form of
the averaged nonlinear programming problem NP ):
1. The optimal distributions of the randomized variables have the fol-
lowing form

P ∗(u) =
m∑

ν=0

γνδ(u − uν) (3.14)

where γν obey the conditions (3.6).
2. A non-zero vector λ = (λ0, λjν)(j = 1, r; ν = 0, m) can be found
such that for each basic value uν of vector u the function

L1 = λ0
δF0

δf
f(x, u) +

r∑
j=1

λj
δFj

δf
f(x, u),

attains its maximum on Vu. Here

f̄ =
m∑

ν=0

γνf(x, uν).

Hence
uν = arg max

u∈Vu

L(x∗, λ, u). (3.15)

3. The function

R =
r∑

j=0

λjFj (3.16)

can not be improved locally with respect to its deterministic arguments

δR

δx
δx ≤ 0. (3.17)

The proof of this theorem is given in the Appendix.
It is easy to show that after reduction of the problems NP and NP

u

to the form (3.12), (3.13) their optimality conditions follow from the
theorem 3.3. Note that the number of the basic solutions is determined
by the dimension of the fector-fuction f0.

4 Averaging in variational problems

Introduction of averaging in variational problems, where unknown vari-
ables depend on the scalar argument t, allows to obtain a solution in a
form of maximizing sequences and to formulate optimality conditions
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in a from of maximum principle for any arbitrary form of optimal-
ity criterion and constraints. We shall start by giving some auxiliary
statements and definitions.

Assume that in the problem A: IA(y) → max, y ∈ DA there are
a finite number J of constraints, which determines the feasible set
DA. Assume that for j-th condition (j = 1, J) the norm ∆j can be
introduced for the deviation of this constraint from the nominal value.

Definition 4.1. The problem A is correct with respect to its value if
for any ε > 0 such δ can be fount that from the inequality max

j
(∆j) ≤ δ

follows that the absolute value of the deviation of I∗A is less or equal to
ε.

Nonlinear programming problem is correct in terms of the definition
4.1. if the Slater’s complementary slackness conditions are satisfied.

Definition 4.2. The relaxation of the problem A B: IB(y) →
max, y ∈ DB is equivalent if

I ∗̄A = sup
y∈DĀ

IĀ(y) = I∗B = sup
y∈DB

IB(y) (4.1)

Lemma 4.3. The sufficient condition for the relaxation to be
equivalent is the possibility for any solution of the extended problem
y0 ∈ DB to find such a sequence of the solutions of the original prob-
lem {yi} ⊂ DA that

lim
i→∞

IĀ(yi) = IB(y0) (4.2)

If the problem is correct with the respect to its value then it is
possible that the sequence {yi} does not belong to DĀ. The only
requirement is that any constraint of the original problem is satisfied
with arbitrary accuracy in the limit i → ∞ (in accordance with the
definition 4.1).

Lemma 4.4. If y∗
A is an optimal solution of the problem A, the

relaxation B is equivalent to A and DB ⊃ DA, then y∗
A obeys necessary

conditions of optimality of the relaxation problem.
We will call the following problem the canonical form of variational

problem

I =
∫ T

0

[
f01(t, x(t), u(t), a)+ (4.3)

+
∑

l

f02(t, x(t), a)δ(t − tl)
]
dt → max

subject to constraints

Jj(τ) =
∫ T

0

[
fj1(t, x(t), u(t), a, τ)+
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+fj2(t, x(t), a, τ)δ(t − τ)
]
dt = 0; (4.4)

∀τ ∈ [0, T ], j = 1, m, u ∈ Vu, a ∈ Va.

Here a is the vector of parameters, which are constant on [0, T ], func-
tions fj1 and fj2 are continuously differentiable on x, a and t and
continuous on u.

Lemma 4.5. Assume that the problem (4.3), (4.4) is correct with
respect to its value (according to the definition 4.1, where a close-
ness of each initial and variated condition (4.4) is defined as ∆j =
maxτ |Jj(τ)|) then the averaged relaxation of this problem

Ī =
∫ T

0

[
f01(t, x, u, a)

u
+
∑

l

f02(t, x, a)δ(t − tl)
]
dt → max (4.5)

subject to constrains

J̄j(τ) =
∫ T

0

[
fj1(t, x, u, a, τ)

u
+ fj2(t, x, a, τ)δ(t − τ)

]
dt = 0, (4.6)

∀τ ∈ [0, T ], j = 1, m, u ∈ Vλ, a ∈ Va

is equivalent to the problem (4.3), (4.4).
Here

fj1
u

=
∫

Vu

fj1(t, x, A, u, a, τ)P (u, t)du. (4.7)

Distribution P (u, t) obeys the conditions

p(u, t) ≥ 0;
∫

Vu

P (u, t)du = 1 ∀t ∈ [0, T ]. (4.8)

The proof of this statement is based on Lemma 4.3, because for any
function P (u, t) in the problem (4.5), (4.6) such a sequence of solutions
of the problem (4.3), (4.4) can be constructed that the functionals I
and Jj tend to I and Jj(τ) correspondingly.

Sliding regimes are examples of such sequences inoptimal control
problems.

The solution of the problem (4.5) – (4.6) is the distribution P ∗(u, t),
the function x(t) and the vector a. It obeys the following conditions
(Theorem 4.5.):
1. Assume that the optimal solution of the problem (4.5)–(4.6) is

P ∗(u, t) =
m∑

ν=0

γν(t)δ(u − uν(t)), (4.9)
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where the piece-wise continues functions γν(t) ≥ 0 ∀t ∈ [0, T ] and
m∑

ν=0

γν(t) = 1.

2. A scalar λ0 ≥ 0 and a vector function λ(τ) = (λ1(τ), ...λm(τ)),
which is piece-wise continuous for almost everywhere on [0, T ] and is
defined and non-zero simultaneously with λ0 on the interval [0, T ] and
equal zero outside of this interval can be found such that the functional

S = λ0Ī +
m∑

j=1

∫ T

0

λj(τ)J̄j(τ)dτ =
∫ T

0

Rdt (4.10)

and its integrand

R = λ0R0 +
m∑

j=1

Rcn
j , (4.11)

R0 =
m∑

ν=0

γν(t)f01(t, x(t), uν(t), a) +
∑

l

f02(t, x(t), a)δ(t − tl),

Rcn
j =

∫ T

0

λj(τ)
[ m∑

ν=0

γν(t)fj1(t, x(t), uν , a, τ)+

+fj2(t, x(t), a, τ)δ(τ − t)
]
dτ (4.12)

obey the following conditions

δS

δa
δa ≤ 0, (4.13)

δR

δx
= 0, (4.14)

uν(t) = arg max
u∈Vu

R(x, λ, a∗, u). (4.15)

Since the relaxation (4.5), (4.6) is equivalent to the problem (4.3),
(4.4), from the Lemma 4.4 it follows that if the optimal solution of the
latter one (u∗(t), x∗(t), a) exists, then it obeys the optimality condi-
tions (4.13) –(4.15).

In the conditions of existence for the optimal solution of the prob-
lem (4.3), (4.4) it is assumed that γ0(t) = 1, and the other multipliers
γj(t) in (4.9) are equal zero.

Conditions (4.13) – (4.15) allow to derive necessary conditions of
optimality in a form of maximum principle for a problem with arbi-
trarily combination of criterion type and constraints. This can be done
simply by writing down items R0 and Rcn

j for each type of criterion
and constraints, denoting u(t) these variables, which after reducing the
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problem to the canonical form, are present in function f01 only (vari-
ables of the first group),and then writing down function R according
to (4.11) and substituting it into (4.13), (4.15).

It is also important that this allows to trace easily how changes or
addition of some condition effect optimality conditions - the changes it
causes in one of the terms in function R and in participation of some
variables in the first group.
Example: Let us consider the following optimal control problem

I =
∫ T

0

f01(x, u, t)dt → max (4.16)

ẋj = fj1(x, u, t), u ∈ Vu, j = 1, m, x(0) = x0.

with the usual assumptions about the functions f0 and fj . ¿From
the comparison of the problems (4.16) and (4.3), (4.4) it is clear that
R0 = f01(x, u, t). Differential equations can be rewritten in (4.4) form
as

Jj(τ) =
∫ T

0

[
fj1(x(t), u(t), t)h(τ − t) − x(t)δ(τ − t)

]
dt = 0.

Here h(t) is Heaviside function and δ(t) is Dirac function. The term

Rcn
j =

∫ T

0

λj(τ)
[
fj1(x, u, t)h(τ − t) − xj(t)δ(τ − t)

]
dt =

= fj1(x, u, t)
∫ T

t

λj(τ)dτ − λj(t)x(t) =

= fj1(x, u, t)ψj(t) + ψ̇j(t)xj(t), (4.17)

where ψj(t) =
∫ T

t

λj(τ)dτ . The function R is

R = λ0f01(x, u, t) +
∑

j

ψj(t)fj1(x, u, t) +
∑

j

ψ̇j(t)xj(t).

For the bounded function λj(τ) ψj(T ) = 0.
Conditions (4.13), (4.14) yield equations of the Pontrygin’s maxi-

mum principle. Note that inclusion of various constraints at the final
instance of time yields transversality conditions directly, without any
special derivations.

Indeed, assume that the constraint

F (x(T )) = 0
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is added to the problem (4.16). This constraint adds the term

Rcn
F = λF F (x(t))δ(t − T )

to the function R. Then from the condition (4.14) it follows that

ψj(T ) = λF
δF

δxj
.

Other applications of this approach can be found in [6]–[7].
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Appendix.

The proof of the Theorem 3.3. For the fixed x ∈ Vx the values of
the vector-function f in the problem (3.12), (3.13) belong to the set
Q, which represents the mapping of the set Vu onto an m-dimensional
space f . The values of the vector f̄ belong to the convex hull of Q.
According to the Carateodory theorem each element of the convex hull
can be represented as a linear combination of not more than (m + 1)
elements of Q. Therefore, f(x, u) can be represented as

f(x, u) =
m∑

ν=0

γνf(x, uν), (A.1)

where γν obey the conditions (3.5). The equality (A.1) allows to re-
represent the problem (3.12), (3.13) as a standard nonlinear program-
ming problem with the unknown variables x, uν , γν (ν = 0, m) and the
constraints (3.13) and (3.5). We will use the Kuhn-Tucker theorem to
derive its contitions of optimality.

Indeed, after the substitution of the expression (A.1), the problem
(3.12), (3.13) takes the following form

F0

[
m∑

ν=0

γνf(x, uν), x

]
→ max (A.2)

subject to constraints

Fj

[
m∑

ν=0

γνf(x, uν), x

]
= 0, j = 1, r, x ∈ Vx (A.3)

m∑
ν=0

γν = 1, γν ≥ 0. (A.4)

Its Lagrange function is

R̄ =
r∑

j=0

λjFj

[
m∑

ν=0

γνf(x, uν), x

]
− Λ

(
m∑

ν=0

γν − 1

)
.

γν are non-negative and the condition of R̄ optimality with respect to
γν is

∂R̄

∂γν
δγν ≤ 0, δγν ≥ 0.

Therefore, for the basic values u = uν the function

L =
r∑

j=0

λj
∂Fj

∂f̄
f(x, u) = Λ for γ∗

ν > 0 (A.5)
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and
L ≤ Λ for γν = 0.

Thus, for all the values uν , that have positive weights in the solution
of the problem (A.2)–(A.4), the function L attains its maximum on u
over the set Vu. That is, the condition (3.15) holds. If f(x, u∗) ∈ Q on
the optimal solution then L attains its maximum at u∗.

The condition of optimality of R̄ on x has the following form

∂R̄

∂x
δx ≤ 0 ⇒

r∑
j=0

λj

[
∂Fj

∂f̄

m∑
ν=0

γν
∂f(x, uν)

∂x
+

∂Fj

∂x

]
δx ≤ 0. (A.6)

In (A.5), (A.6) we denote f(x, u) =
m∑

ν=0

γνf(x, uν). Thus
m∑

ν=0

γν
∂f(x, uν)

∂x
=

∂f̄

∂x
.

After using the denotion (3.16) the condition (A.6) yields the in-
equalities (3.17).

Let us show how the statements 3.1 and 3.2 follow from this the-
orem. Indeed, in the problem (3.3) the averaging is done over all
its variables, the dimension of the function f is m and the function L,
which is used in formulas (3.15) and (A.5), coinsices with the Lagrange
function R of the problem (3.1).

In problem (3.7) the averaging is done on u, the derivatives
∂F

∂f̄
in

(A.5) are equal one, because Fj and fj are identical. Therefore the
functions L and R coinsise with each other and with the Lagrange
function of the problem (3.8) without averaging. Here the conditions
(3.15) and (3.17) coinsise with (3.11).

The proof of the 	Lemma 4.3 follows from the definition (4.2). If
the optimal solution y∗ of the extended problem exists then y0 can be
replased with y∗.

The Lemma 4.4 follows from from the condition that y∗
A can not be

improved on DA, and DA is a subset of the fesible set of the extended
problem.

The proof of the Lemma 4.5 follows from the Lemma 4.3 and from
the fact that for any solution P 0(u, t), x0(t), a0 it is possible to find a
sequence of solutions

{zi} = {ui(t), x0(t), a0},
for which

I(zi) → I∗, Jj(τ, zi) → Jj(τ) = 0.

Indeed, one can prove the first statement of the Theorem 4.5 by com-
pletely repeating the derivations, which were employed above to prove
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the Theorem 3.3: that for any fixed values of t, x, a, τ the value of the
vector f̄ = (f̄0, f̄1, ..., f̄m) belongs to the convex hull of the set Q that
is produced by the mapping of Vu onto (m + 1)-dimensional space f .
Since the solution maximizes f0 with respect to U , it belongs to the
upper bound of Q and can be represented as a linear combination of
not more than (m + 1) (and not (m + 2)) elements of Q. This proves
the (4.9).

For any solution P 0(u, t) that has the form (4.9) it is possible to
construct the sequence {ui(t)} of solutions of the problem (4.3), (4.4)
using the following algorithm: let us divide the interval [0, τ ] into i
sub-intervals ∆1, ∆2, ..., ∆i and assume that on each of these intervals
the functions γν(t) and uν(t) are constant. Assume that for the r-
th interval their values are γνr and uν

r (ν = 0, m). We shall call the
correspondent problem a discretization of the problem (4.5), (4.6).

Let us construct a similar division of the interval [0, τ ] in the prob-
lem (4.3), (4.4). The only difference here is that each sub-interval of
the first division is futher subdivided into (m + 1) smaller pieses. So,
∆r is divided into ∆r0, ∆r1, ..., ∆rm, such that the following equality
holds

∆rν

∆r
= γνr.

We then assume that the variables u(t) in the problem (4.3), (4.4) are
piece-wise constant functions of time and that are equal to Uν

r on the
interval ∆rν . The values of the functionals I and J(τ) in the problem
(4.3), (4.4) on the solution, which is constructed by this algorithm,
are equal to the values of the corresponding functionals in the dis-
cretization problem (4.5), (4.6). If i → ∞ and ∆r approaching zero
uniformally on r then the values of ID and JD(τ) in discretization of
the averaged problem are arbitrary close to I and J(τ), because the
problem (4.3), (4.4) is correct with respect to its value. Lemma 3.5 is
proven.

In order to prove the Statement 2 of the Theorem 4.5, we will use
the following theorem [5]:
Let y∗(t) be a solution of the following maximization problem

I =

T∫
0

f0(y, t)dt (A.7)

subject to constraints

Jj(τ) =

T∫
0

fj(y, t, τ) = 0, j = 1, m, τ ∈ [0, T ], (A.8)
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where f is continuous and continuosly differentiable function on all its
arguments. Then such non-zero vector

λ = (λ0, λ1(τ), ..., λm(τ)), λ0 ≥ 0,

can be found that for y = y∗ the following inequality holds(
∂R

∂y

)
δy ≤ 0, (A.9)

where

R = R0 +
m∑

j=1

Rj = λ0f0 +
m∑

j=1

T∫
0

λj(τ)fj(y, t, τ)dτ,

and δy is a variation of y(t) that does not violate the condition y ∈
Vy(t).

For a distribution P (u, t) that has the form (4.9) the problem (4.5),
(4.6) takes the form (A.7), (A.8) with

R̄ = R + Rm+1 = λ0R0 +
∑

j

Rcn
j − Rm+1,

where R0 and Rcn
j have the form (4.12), and the term Rm+1 corre-

sponds to the condition

m∑
ν=0

γν(t) − 1 = 0, ∀t ∈ [0, T ], (A.10)

which can be rewritten in the form (A.8) as

Jm+1(τ) =

T∫
0

(
m∑

ν=0

γν(t) − 1

)
δ(t − τ)dτ = 0 ∀τ ∈ [0, T ].

Thus,

Rm+1 =

T∫
0

λm+1(τ)

(
m∑

ν=0

γν(t) − 1

)
δ(t−τ)dτ = λm+1(t)

(
m∑

ν=0

γν(t) − 1

)
.

The constraint (A.9) on the the variables γν

∂R̄

∂γν
δγν ≤ 0, γν ≥ 0
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yields the following condition for the basic values uν(t) (only for these
values γν(t) > 0),

R(x, λ, a∗, uν) = λm+1(t), ν = 0, m,

and for u 
= uν(t) γν(t) = 0 and δγν > 0, and therefore

R(x, λ, a∗, u) ≤ λm+1(t).

from which the condition of (4.15) maximum follows.
The condition (4.14) follows from (A.9) after taking into account

the absence of constraints on x, and the conditions (4.13) are the conse-
quence of the fact that the problem (3.5), (3.6) is a nonlinear program-
ming problem with respect to its parameters a and S is its Lagrange
function.
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