Выпуклость полуконтинуумов в заданных направлениях Знаменский С.В., Знаменская Е.А.

Институт программных систем РАН, Переславль-Залесский

Множество $Q \subset \mathbb{C}$ называется выпуклым в направлении $\beta \in \mathbb{C} \setminus \{0\}$, если для любого $\alpha \in \mathbb{C} \setminus Q$ множество $(\alpha - \beta \overline{\mathbb{C}}_+) \setminus Q$ является полуконтинуумом.

В терминах выпуклости в направлении формулируются условия эпиморфности оператора свертки, в том числе условия разрешимости линейных дифференциальных уравнений бесконечного порядка с постоянными коэффициентами в пространствах функций, голоморфных на множествах в \mathbb{C} . Одним из условий разрешимости указанных уравнений на множестве $Q \subset \mathbb{C}$ является [1,2,3] базисная односвязность Q. В [4] замечено, что в этом случае Q и $\overline{\mathbb{C}} \setminus Q$ являются полуконтинуумами.

Рассмотрены следующие условия:

```
(a) (\alpha - \beta \mathbb{C}_+) \setminus Q линейно связно \forall \alpha \in \mathbb{C},
```

$$(\overline{\mathbf{a}}) (\alpha - \beta \overline{\mathbb{C}}_+) \setminus Q$$
 линейно связно $\forall \alpha \in \mathbb{C}$,

(s)
$$(\alpha - \beta \mathbb{C}_+) \setminus Q$$
 полуконтинуум $\forall \alpha \in \mathbb{C}$,

$$(\overline{\mathbf{s}}) (\alpha - \beta \overline{\mathbb{C}}_+) \setminus Q$$
 полуконтинуум $\forall \alpha \in \mathbb{C}$,

(c)
$$(\alpha - \beta \mathbb{C}_+) \setminus Q$$
 связно $\forall \alpha \in \mathbb{C}$,

$$(\overline{c})(\alpha - \beta \overline{\mathbb{C}}_+) \setminus Q$$
 связно $\forall \alpha \in \mathbb{C}$,

$$(a')(\alpha + \beta \mathbb{C}_+) \cap Q$$
 линейно связно $\forall \alpha \in \mathbb{C}$,

$$(s')$$
 $(\alpha + \beta \mathbb{C}_+) \cap Q$ полуконтинуум $\forall \alpha \in \mathbb{C}$,

$$(c')$$
 $(\alpha + \beta \mathbb{C}_+) \cap Q$ связно $\forall \alpha \in \mathbb{C}$,

- $(\overline{\mathbf{a}}')\,(lpha+eta\overline{\mathbb{C}}_+)\cap Q$ линейно связно $oralllpha\in\mathbb{C}$,
- $(\overline{\mathbf{s}}')$ $(\alpha + \beta \overline{\mathbb{C}}_+) \cap Q$ полуконтинуум $\forall \alpha \in \mathbb{C}$,
- (\overline{c}') $(\alpha + \beta \overline{\mathbb{C}}_+) \cap Q$ связно $\forall \alpha \in \mathbb{C}$.

В [3] показано, что для линейно связных множеств в \mathbb{C} с линейно связным дополнением до $\overline{\mathbb{C}}$ и, в частности, для односвязных областей с линейно связным дополнением до $\overline{\mathbb{C}}$, условия (\overline{a}') и (\overline{c}') эквивалентны. В [2] для полуконтинуумов с полуконтинуальным дополнением до $\overline{\mathbb{C}}$ доказана равносильность условий (\overline{c}') и (\overline{s}') .

Для полуконтинуума Q справедлива импликация $(\overline{c}) \Rightarrow (\overline{s}')$. Кроме того, если $\overline{\mathbb{C}} \setminus Q$ полуконтинуум, то $(c') \Rightarrow (s')$; если же Q—ограниченный полуконтинуум, то $(c) \Rightarrow (s')$. Для линейно связного множества Q доказана импликация $(\overline{s}') \Rightarrow (\overline{a}')$; если Q линейно связно и $\overline{\mathbb{C}} \setminus Q$ связно, то $(s') \Rightarrow (a')$.

В классе полуконтинуумов получена в некотором смысле полная картина взаимосвязи различных определений выпуклости в направлении. Приведем полученные результаты для некоторых подклассов.

Предложение 1 Пусть $Q \subset \mathbb{C}$ — область с линейно связным дополнением до $\overline{\mathbb{C}}$. Тогда условие (c) вытекает из равносильных между собой условий (a) u (s), а условия (\overline{c}) , (\overline{s}) , (\overline{a}) , (c'), (\overline{c}') , (\overline{s}') , (\overline{s}') , (\overline{a}') , (\overline{a}') эквивалентны. Других импликаций в рассматриваемом случае нет.

Предложение 2 Пусть $Q \subset \mathbb{C}$ — линейно связное множество с линейно связным дополнением до $\overline{\mathbb{C}}$. Тогда равносильные условия (a'), (s'), (c') вытекают из эквивалентных между собой условий (\overline{a}') , (\overline{s}') , (\overline{c}') , (\overline{a}) , (\overline{s}) , (\overline{c}) . Условие (c) следует из эквивалентных условий (a) и (s). Других импликаций в рассматриваемом случае нет.

Предложение 3 Пусть $Q \subset \mathbb{C}$ — полуконтинуум с полуконтинуальным дополнением до $\overline{\mathbb{C}}$. Тогда равносильные условия (s'), (c') вытекают из (\overline{a}) , (\overline{a}') , (a') и из эквивалентных между собой условий (\overline{s}') , (\overline{c}') , (\overline{s}) , (\overline{c}) ; условия (\overline{s}') , (\overline{c}') , (\overline{s}) , (\overline{c}) следуют из (\overline{a}) и (\overline{a}') . Условие (s) следует из (a); условие (c) следует из (a) и (s); условие (a') вытекает из (\overline{a}') . Других импликаций в рассматриваемом случае нет.

В доказательстве перечисленных импликаций ключевую роль имеют следующие утверждения:

Лемма 1 (о континууме в цепочке связных множеств) Пусть континуумы $A \subset \overline{\mathbb{C}}$, $B \subset \overline{\mathbb{C}}$, $C \subset \overline{\mathbb{C}}$ и связное множество $D \subset \overline{\mathbb{C}}$ таковы, что $(A \cap C) \subset \partial C$ и $(A \cup B) \cap D = \emptyset$. Тогда существует континуум X, удовлетворяющий условиям

$$(A \cap B) \subset X \subset (B \setminus C) \cup (\partial C \setminus D).$$

Лемма 2 Если в условиях леммы о континууме в цепочке связных множеств B-простая кривая, а ∂C -простая замкнутая кривая, то полученный континуум X линейно связен.

Отсутствие других импликаций подтверждается соответствующими примерами.

Работа выполнена при финансовой поддержке РФФИ, грант 99-01-00951.

Список литературы

- [1] Мальцев И. М. Эпиморфность оператора свертки в пространствах функций, аналитических на связных множествах// Докл. РАН, 1994. т.336. вып.3. С.297—300
- [2] Мальцев И. М. Об условиях эпиморфности оператора свертки в ком-плексной области// Изв. вузов. Математика, 1994. вып.7,11. С.49–58, 43–52.
- [3] Мальцев И. М. Об эпиморфности свертки в пространствах ростков функций, аналитических на связных множествах из $\overline{\mathbb{C}}//$ Деп. в ВИ-НИТИ, 1992. №1241-В92.
- [4] Шрайфель И.С. *Об эквивалентности понятий базисной односвязности и квазиконтинуальности*// Международная школа-семинар по геометрии и анализу памяти Н.В. Ефимова. Ростов-на-Дону. 1998. с.139.