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Abstract. In this paper, two types of systems — thermodynamic and economic — are consid-
ered, which include a large number of micro subsystems and are controlled on the macro level
(macrocontrolled systems). The analogy between the maximal work problem in thermodynamics
and the maximal profit problem in a microeconomic system is investigated. The notion of exergy
is generalized for the systems which do not contain reservoirs, and the conditions of maximal
power of heat engines are generalized for systems with arbitrary structure. The notion of system
profitability and the measure of irreversibility of an microeconomic processes are introduced. The
extremal principle which determines an equilibrium state of open microeconomic system, is for-
mulated. The conditions of optimality of resource trading and the expression for profitability of
resource exchange are formulated for systems which include market with perfect competition, and
for systems which do not include it. Economic analogues of the second law of thermodynamics are
formulated using introduced concepts. The first part of the paper is devoted to thermodynamic
systems and the second to microeconomic systems.

1. Introduction

Many systems — physico-chemical, economic, social, etc. — consist of a large num-
ber of subsystems, where neither control nor measurement of the current states
of individual subsystems are possible. The control in such systems changes the
conditions for all the constititive subsystems. That is, the control here is a macro-
control. The examples are the changes are the contact between thermodynamic
systems, changes of prices, interest rates, taxes, etc. We shall call such systems
macro controlled and the processes that occur in them — macrodynamic processes
(following L. I. Rozonoer [8]). The important feature of macrocontrolled systems
is that when a contact is established between such systems, the exchange pro-
cesses between subsystems of these systems occur which change the macroscopic
states of these systems. In order to separate subsystems and return them into
their previous states it is necessary to use a control, which changes the state of
the environment. This determines the irreversible character of the processes here.
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The factor of irreversibility has been studied in great detail in thermodynamics,
but it plays no lesser role in other macrocontrolled systems. Meanwhile, there
are very few results available regarding quantitative estimates of irreversibility for
such systems. Also the methodology of thermodynamics has been rarely applied
to solve problems here.

The maximal work is a typical problem related to irreversibility of thermody-
namic systems. The concept of exergy (availability) is widely used for the analysis
of thermodynamic systems [3,4], etc. The exergy analysis of a system, which in-
cludes mechanical and heat processes, uses the exergy Ec of the amount of heat Q4
derived from the reservoir with the temperature 77y in the system, which includes
the reservoir with the temperature T_. It is defined as the maximal work that can
be derived using Q4. Since the limiting work corresponds to the reversible Carnot
cycle of a heat engine, the exergy depends on the temperature of the cold reservoir
T_ and is equal to the product of the amount of heat on the Carnot efficiency

By = Qu(1- ). (1)

The exergies of other forms of energy are defined similarly, via a reversible process
of deriving work in a system with reservoir whose temperature, chemical potential,
pressure, etc. are fixed. These fixed parameters are sometimes called the param-
eters of the “global environment”. If the initial parameters of the system have
the same values as the parameters of the global environment then the entropy of
such system is zero. In the majority of cases some ambiguity of the parameters
of the “global environment” is of no importance because calculations use exergy
increments in various processes and not their absolute values. Later we consider
the maximal work problem in various systems and subject to various conditions.
In particular, it is possible that a system does not include reservoir, or that work
has to be produced with a given power or in given time, etc. Accordingly, we
define exergy as the limiting work that can be derived in a thermodynamic system
subject to given constraints. When this generalized definition of exergy is used,
irreversible processes are included into maximal work processes, which are used in
exergy analysis. Moreover, in this case exergy cannot be defined as availability,
because the maximal work in the system depends not only on the amount and
potential of energy, but also on the structure of the system and the time frame of
the process. This generalized definition of exergy is equivalent to the traditional
definition for systems with reservoir and without constraints on rates of processes.

The maximal work can be derived from the system in a reversible process of
equalization of the intensive parameters of its sub-systems. In such a process the
entropy increment is zero, the rates of the exchange fluxes are infinitely small,
and the duration of the processes tends to infinity. If the system is adiabatically
insulated then its Ec is equal to the difference between its internal energy in the
beginning of the process and in the end of it, when intensive variables of subsystems
become equal. We shall denote by E,, the exergy of a system calculated without
taking into account the constraints on the duration of the process.

The finite-time thermodynamics, which emerged in 1980-ties [1,2], considers

’



Irreversibility and Limiting Possibilities of Macrocontrolled Systems: I. Thermodynamics 3

thermodynamic problems with fixed average rates. One of the ways to fix average
rate is by imposing a constraint on the duration of the process 7. Then the
availability of the heat fluxes in an open system is sought subject to additional
constraint on the power N is the heat engine (which is fixed or maximal-possible).

In particular, if the system includes a number of reservoirs with the temper-
atures T; and it is required that the rate of work production, that is, the power
N of a hypothetical heat engine is given, then the exergy of the heat @y, derived
from the reservoir with the temperature 77, will be different from the expression
(1). We shall denote this Fc as Fy.

If the system is adiabatically insulated and includes a number of subsystems
with finite capacities whose temperatures change when their internal energies
change, then the exergy can be defined as the maximal work which can be produced
by temperature equalization in such system. Here the duration of the process can
be unlimited or fixed and equal 7. Accordingly, we get the values of F, and E..

Maximal work problems for many thermodynamic systems have been solved.
We will list their solutions. Other maximal work problems will be considered in
this paper. It is clear, that the exergies Fy and F, (the exergy of thermodynamic
system in finite time) are lower than Fy and F correspondingly, because non-zero
rates of the exchange processes lead to dissipative losses and the increase of system
entropy. En and E; depend not only on the initial state of the system, capacities
of the sub-systems, etc., but also on the coefficients and laws, which determine the
kinetics of heat and mass exchange.

For example, in a simplest system, which includes reservoirs with the temper-
atures T} and T_, and linear dependencies of the heat fluxes on the temperatures
of the reservoirs and the working body T,

g+ = o (T4 =T),  ¢g- = a_(T'—11),
the following solution was found [9]

2NQ4

En = 2
N+ §(Th = T0) = \/N? - §(Ts ~ TN + (1 = T

where - Josa "
C T Va e va R

if the working body contacts reservoirs in turn, and

4a+a_
at + o

if there is a permanent contact with reservoirs.

As a rule, calculation of E. is reduced to the realization of minimal dissipation
process with fixed average rate. This fact determines the importance of the study
of minimal dissipation processes if finite-time [10].

In the first part of the paper, the new solutions of maximal work in finite time
E. are derived for a number of thermodynamic systems of various configurations.
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E

Fig. 1: A system which includes subsystems with finite capacities, working body
and reservoir.

The second part of this paper is devoted to the introduction of similar notions and
solution of similar problems in microeconomic systems.

2. Exergy of a Closed Thermodynamic System

If a system includes two or more reservoirs with different values of intensive vari-
ables, then it is possible to derive infinite amount of work from such a system.
Thus the standard definition of exergy cannot be applied here. But it is possible
to consider exergy of one given reservoir in the system. A large number of publica-
tions is devoted to the study of limiting possibilities of heat engines with fixed and
with free power. Formulae, similar to (2), can be obtained not only for reservoirs
whose temperatures differ, but also for reservoirs with different pressures, chemical
potentials, etc. Here we will consider only thermal-mechanical systems.

2.1. SYSTEM WITH RESERVOIR

2.1.1. The duration of the process is not limited
Assume the system includes a reservoir with temperature 7_, k subsystems with
finite heat capacities ¢;(i = 1,..., k) and initial temperatures Tjy and the working
body. In [9] the maximal work problem was solved under the assumption that
the temperatures of subsystems are controlled by changing their volumes. Here
we assume that the volumes of the subsystems are constant and the work can
be obtained by changing the volume, and consequently the temperature of the
working body during its contact with subsystems.

Let us find E, for one subsystem. First, we write the energy and entropy bal-
ances for the reversible heat engine which operates by exchanging energy between
the subsystem and the reservoir (Fig. 1)

Q@  dQ- - _

d —dQ_ —dF =0
Q+ Q 9 T T

0 = dQ_:dQJr%. (@)

The second equation states that there is no increase in the working body entropy.
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\

Fig. 2: Availability of the system shown in Fig. 1 for finite and for unlimited
duration of the process.

Y

From (4) it follows that

dE = dQ+(1 - %) =—c (T)(1 - T—:,j)dT,
SO -
By = /C(T)(1 - %)dT (5)
T_

For the constant heat capacity

T
E. — c[TO —T,<1 +ln—0)] .
T
This function is non-negative and is equal zero if Ty = T_ (Fig. 2).
For k sub-systems F, = Z?:l FE;~. For ¢; = const

n

Ea = Zci[TOi—T_(quln%)}. (6)

=1 n

2.1.2.  Fized duration of the process

In this case for each subsystem (we omit subscript ¢ here) we consider the problem
of choosing such temperatures of the working body 77 (t) and T5(t), that the derived
work is maximal

T

B = [l T) - (T ) — o (7)
0
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subject to the constancy of the working body entropy

T

/(%(2%) B Q(%T)>dt ~ 0. (8)

0

and subject to the subsystem temperature changing, when the heat is removed
from it, according to the equation

ar o 7Q+(T7 Tl)

W s o= 9)

Here again the condition (7) follows from the energy balance and the condition
(8) follows from the entropy balance. ¢4 and g_ denote the heat fluxes from the
subsystem to the engine and from the engine to reservoir.

We denote the entropy increment of working body when it receives heat as
AS. Then the problem (7) (9) can be decomposed into two subproblems. The

first problem is
-

Q+ = /q+(T,T1)dt — max (10)
0

subject to the constraint (9) and the condition

T

T, T
/ @+(TT) o Ag. (11)
Ty
0
From the constancy of 1", and therefore the constancy of 15, it follows that the
second subproblem takes the form

Q- = q(Tr, T_)r — n%in (12)

subject to the constraint
q— (T, T-) AS
Sk P Al 13
TQ T ( )
Since the condition (13) links 75 and AS, @Q_ depends on AS, and the maxi-
mum of Q4 depends on AS. AS should be chosen in such a way that
E.(AS) = [Q7L(AS) — Q= (AS . 14
(48) = [Q3(A5) - Q2(48)] —  max (14)
The problem (9), (10), (11) was studied in [5]. Using (9) and taking into
account the monotone dependence of T'(t), one can substitute ¢ with the tempera-
ture of the working T" as a free variable of the problem. This yields the equivalent
problem
To

Q. — / oTYdT —  max (15)
T,1:1(T)

S
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subject to the constraints

Ty
(T -
/ Abdl = A4S, (16)
T
I e
/q+(T,T1) ar = 7. (17)
T

The conditions of optimality of this problem have the following form [5]

8(1+( 7(T)
0Ty \ q+ (T, T (

2
T))) = const, VT. (18)

They determine T3 (T") up to the constant k.
The value of this constant k is to be found by substituting the dependency
Ty (T, k), found from (18), into (16), (17). Its dependence on AS leads to the
dependence of Q% on AS or, which is equivalent, to its dependence on k.
For Newton laws of heat exchange
g- = a(Ir 1), g+ = ap(T'—1T1), (19)
and constant heat capacity ¢, the equation (18) takes the form
T?
o (T-T)2 cons 1

where k is some constant (0 < k < 1).
The substitution of 71(T),k) into the conditions (16), (17) yields equations,
which link k£, AS and T

Cc To Cc TO
AS = S22 = % w2 20
Tl - fonl (20)
or (1 k)
— Tay (1 —
T = Toexp<—%>. (21)

The substitution of T' into the condition (20) yields
Tar(l—k)

AS = 22
k' ) ( )
and the substitution of Ty = kT and T into (15) gives
* _ TO[+(]_ — k)
QL (k) = Toc[l—exp<—f>]. (23)

From the condition (13)

AST: ar(l1—k
a (l,—T.) = 72: +(k )T2
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it follows that

a_k
Ty = T_ .
2 ak—ar(1—k)

Because Ty > 0, a_k — a4 (1 — k) > 0, and therefore k > a4 /(a— + ay).
TT_ara_(1—k)

(k) = . 24
The condition (14) yields the equation for k
oQ% Q- LT g T o2
e s ] Tye™ e 1=F) = . 25
ok ok e (ak—ar(I—h)? (25)

The left hand side of this equation is a monotonically increasing function of
k, when k increases from zero to one. Its right hand side has discontinuity at
k' = ay/(a- + ay). If k < kY then the right hand side of this equation is non-
negative. If k > k% then this right hand side monotonically decreases from infinity
to T_. The solution of the equation (25) exists, is unique and for Ty > T_, it obeys
the inequality
a4
a4 + a_
After the value of k;, which maximizes E;;(AS;(k;)), is found for each of the
subsystems the availability is determined as

E, =Y E
i

2.2.  SYSTEMS WITHOUT RESERVOIRS

< k < 1.

2.2.1.  Unlimited duration of the process

If there are no restriction on the duration, then the process which extracts maximal
work from the subsystem (Fig. 3) is a reversible process in which the temperatures
of all subsystems equalize and approach the same value 6.

Here the entropy of the system is not increasing, because the working body
receives and returns heat at the temperature which is infinitely close to the tem-
perature of the subsystem. The exergy of the system F, is equal to the decrease
of the internal energy of the system

Tio

k
= Z@/ci(T dT

i=1

The value of © is to be found from the condition of constancy of the entropy
of the working body
TzO

k
= / CZ(TT 0. (26)
e

i: =1
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T, .c \
. Q

Ty , ck

Fig. 3: A system without reservoir.

In particular for the constant heat capacities from the equality (26) follows
that the finite temperature @ is

C;

— i — v

- ||,111013 Yi = k )
1 ZCV

v=1

so that

k k
= i(Tin—0) = (T-0)> «. (27)

=1 =1

2.2.2.  Relationship between exergy losses and change of system’s entropy

If the traditional definition of exergy as potential availability is used for the sys-
tem with a reservoir, then the loss of exergy in irreversible equilibrium process is
proportional to the increase of the system entropy. So for the heat engine which
includes a reservoir with temperature T and subsystems with heat capacities
¢; and initial temperatures Ty the loss of exergy during irreversible temperature
equalization process is

by = T_AS,

where the entropy increment is

Tio Tio
AS—EZ:(:(T_ lnT_ 1).

Consider now a system, which consists of subsystems with heat capacities ¢;
and initial temperatures T;y, but does not include a reservoir. The exergy of such
a system is determined by (27), where T' = >; Tioi is the average temperature of
subsystems and v; = ¢;/(D_,, ¢,) is the relative heat capacity of the i-th subsystem.

The increment of the system entropy in irreversible temperature equalization
from T}y to T is

= ZAS} = chln T ln—ch,
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thus .
T o AS
— = ex .
e P ;¢

After substitution into (27) we get the expression for the exergy loss in the following

form
By = ZCZT@—%) - Zcmo[l—exp(—g‘i)]. (28)

K K

This is a monotone dependence and its slope for AS =0 is

dEs _
T = T.
(153 .

2.2.83.  Fized duration of the process

Let us consider the same problem with the fixed process duration 7. The difference
between this problem and the problem considered in Sec. 2.2.1 is that the tem-
peratures for each of the subsystems at the end of the process T are different and
that the entropy of the system increases. The increments of the internal energy
and the entropy of the working body equal zero. The problem can be written as

¢ Tio
E, = Z ¢(T)dTT —  max |, (29)
—J Ty, Tpi (T
T;
subject to the constraints
L )
& B
AS, = Z/Tpi(T) dr = 0, (30)
=1
T;
P () dr
¢ .
2 o =1,k 31

T;
Here T),; is the temperature of the working body during contact with the i-th
subsystem. The condition (29) corresponds to the maximal decrease of the internal
energy of the system, the condition (30) corresponds to the zero increase of the
entropy of the working body and (31) corresponds to the constraint on the duration
of the process.

The problem (29) (31) is separable and can be decomposed into k subproblems
about optimal contact between the working body and each of the subsystems.
Initially we assume that the entropy increment of the working body during its
contact with i-th subsystem AS; is fixed.

The optimal contact problem takes the form (we omit subscript 7)

To

B - / oTYdT —  max (32)
J T,Tp(T)

T
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subject to constraints

To
/ ;((TI?) dT = AS, (33)
= p

ey ar

_/q(T,Tp) = T. (34)
T

Note that the problem (32)-(34) is identical to the problem (15)-(17). There-
fore the temperature of the working body during its contact with the i-th sub-
system obeys the condition (18), which determines T);(T;, k;). The substitution
of this dependence into (33),(34) yields the system of two equations with three
unknowns Tj, AS;, k;.

During the second stage of the problem solution these unknowns are chosen in
such a way that

subject to the constraints
> ASi(ki T;) = AS, = 0, (36)
i=1
@Z(Aszakuf) =T, Zzl/vm (37)

Here we denote the function, which is obtained by integrating (34) after substi-
tuting there the dependencies T);(T' k) found from (18), as ¢;.
In particular, for the Newton laws of heat exchange

q; = Oéi(T'i*Tpi), izl,...,m, (38)
as it was shown above, the conditions (18) lead to the dependence

For the constant heat capacities the substitution of this expression into (33)
and (34) gives the dependencies T;(k;) and AS;(k;) in form (21), (22).

The problem (36)—(37) is reduced to finding such k;, AS;, T;, that the maximum
is attained

E. = Zci(Tio ~T;) —  max (40)
i=1 T;,AS; ks

subject to the constraints (36), (21), (22). After elimination of AS; these con-
straints can be reduced to the following form

T’Z(kl) :noexp(_w>v t=1,...,m, (41)
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1N

Fig. 4: The structure of an open system with heat engine.

Zw = 0. (42)

=1

Substitution of T;(k;) into (40) yields a separable problem (40), (42) with m un-
knowns k;. The stationarity conditions for the i-th summand the Lagrange function
for this problem R;

_— (1 — ki
R; = ci(Tio — Ti(ki)) — A %
on k; lead to the system of equations
T (k) = const = 2>, i=1,...,m, (43)
T

which determine k;(A). The value of A is to be found after substitution of these
dependencies into (42).

3. Maximal Power in an Open Thermodynamic System

In this section, we consider an open thermodynamic system which consists of a
number of reservoirs with constant temperatures, and subsystems whose temper-
atures are determined by their internal energies. When the heat engine contacts
with thermodynamic subsystems it receives and rejects fluxes of heat and produces
work. It is required to find such contact temperatures u; for contacts of the heat
engine with each of subsystems that the power of the heat engine N is maximal.
The total number of thermodynamic subsystems here is n, and at least two of
these subsystems are reservoirs (Fig. 4).

The problem of maximal power for a system with two reservoirs with the
temperatures T and T was first considered by Novikov [6], and later by Curson
and Ahlborn [7] and others (see review [11]). Our formulation generalizes this
problem for the systems with arbitrary structure.
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We denote the temperature of the i-th subsystem as 7T;, the heat flux between
the i-th and j subsystems as g;j;(7}.7;) and the heat flux between the i-th sub-
system, and the working body as ¢;(7;,u;). We assume that the heat engine is
internally reversible so the entropy production in it is equal to zero. The maximal
power problem then is written as

n
N = ZqZ(TZuz) —  max (44)
i=m

Uq

subject to the constraints

s atliw) (15)
~

n
S T ) = qi(Thw),  i=1...,m. (46)
j=1
The conditions (44), (45) follow from the energy and entropy balances for the
working body, and (46) follows from the energy balance for the i-th subsystem
whose number m is m < n — 2. The temperatures of the reservoirs T; (i =
m+1,...,n) are given and constant.
The conditions which determine u; and T; for i < m, follow from the conditions
of stationarity of the Lagrange function for the problem (44)-(46)

L = i {qi(Ti,ui)<1 + UA —Oéi> +/\ii%‘i(TjaTi)} )
i ]

=1

for u;, T;. Note that \; =0 for ¢ > m.

oL _ 9g; A 4T ) .
57 =0 = 8ﬂ(1+u—iAl)+Azj_l Gr =0, i=l..m. (4

Equations (45)-(48) allow us to find (n + m) variables w; and 7; and (m + 1)
Lagrange multipliers.

For Newton heat exchange ¢; = o;(T; — i), ¢ji = oi(Tj — T;) the equations
(45) (48) can be rewritten as

n
_T; ~
g a;— = 1, where q;=
ws
=1 >

(49)

n
> (T~ T) = (T~ w), i=1....m, (50)
j=1
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ul(l— X)) = AT, i=1,...,n, (51)
A = .
al(l—i-u—z—)\Z) — )\ijz:laji, z—l,...,m. (52)

In the particular case when n =2, m =0, Ty = T, T5 = T_ from these conditions
follow the known results [6], [7] for the maximal power of heat engine. Indeed in
this case \; = 0, uj = /AT, us = /AT_, and the efficiency of the heat engine 7

1S

(1]

2]

[5]

(6]

5 T_
n:l—u—izl— -,
Uy T+
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