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Abstract

We investigate the manifold M of real symmetric n × n matrices having a
multiple eigenvalue. We present an algorithm to derive a minimal–degree equation
system for M, and give its result equations for n = 3. We prove that 1) M is
prime and has co-dimension 2, 2) each matrix in M having n − 1 of different
eigenvalues is a regular point on the surface M, 3) in the case n = 3, the set of
singular points on M is the set of scalar matrices. We give a geometric description
of M in a neighborhood of each regular point: a fibration over a plane with the
fiber being an orbit by conjugations by SO(n). For n = 3, M is also described as
the straight cylinder over M0, where M0 is the cone over a diffeomorphic image
of torus. These results simplify, generalize and complete the results given in some
previous works on this subject.

Keywords: symmetric matrix, orthogonal change, discriminant, dimension of mani-
fold, primality of manifold, singular point.

1 Introduction

Disclaimer
1) So far (on July 2009) nobody checked this paper for mathematical errors.
2) This paper is translated from Russian by the author, and the author is not a

native English speaker. We hope, the mathematical contents of the below text is still
understandable.

About the word “fibration”
We use it in the two meanings: 1) fibration over a plane considered modulo isometry,

2) fibration over a plane considered modulo diffeomorphism.

Let us denote:
Sym(n) = Sym(n,R) is the space of symmetric matrices of size n× n over the field

R of real numbers (dim Sym(n) = n(n+ 1)/2),
charPol(X)(λ) is the characteristic polynomial of a matrix X of Sym(n),
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M = {X ∈ Sym(n)| discrX = 0} is the surface in Sym(n) defined by discriminant
of charPolX. In other words: M is the variety (manifold, surface) of all matrices in
Sym(n) that have any multiple eigenvalue.

The problem is: to describe the geometry of the algebraic variety M.
About generality: our conclusions are valid for each dimension n. But for n < 3,

M is the line of scalar matrices, and all the below constructs occur trivial for this case.
Therefore we consider below only the case of n ≥ 3.

It is known that each matrix in Sym(n,R) has n real eigenvalues, some of which
coincide.

We call the multi-set of eigenvalues the set of eigenvalues for a matrix in Sym(n)
— together with their multiplicities.

The surface M is given by a single equation discr(X) = 0, where the polynomial
discr(X) has the matrix elements xi,j as variables, has a large degree and many monomi-
als — even for n = 3. A knowledge about the surface M has an important application,
especially for the case of n = 3. Therefore there were done several investigations for
finding various equation systems for M. Thus, for n = 3, it occurs [Il1] that discr(X) is
the sum of squares of several simpler polynomials. This explains why the co-dimension
of M may be greater than one.

In the papers [Ik, D:I]
1) it is written that Wigner and von Neumann considered the variety M (for n = 3)
and have provided certain in-formal reasons of why its co-dimension should be two,
2) it is written that in [Ik] there is proved (for n = 3) that this co-dimension is not less
than two, and this proof uses the result of the paper [Il1] about decomposing discriminant
into a sum of squares,
3) there are given (in [Ik, D:I]) the reasons of why in the case of n = 3 the dimension
of M is 4, and also there is derived certain conclusion about irreducible components of
M.

And these considerations include various transformations with explicit equation sys-
tems for M.

It this our paper we also deal with the case of arbitrary n, and apply a different
approach: the classical method with a linear Lie group of symmetries.

In brief, our approach is as follows. All symmetric matrices are produced by
conjugating diagonal matrices with operators from SO(n). The motion in the plane
of diagonal matrices is orthogonal to the motion along this conjugation orbit. This
provides a smooth parameterization for M, except certain particular points. And it
remains to describe the orbit for a diagonal matrix, with considering the two cases for
the number of its different eigenvalues: n− 1 or less than n− 1.

As to finding for M of a minimal (in total degree) system, this problem is solved by
a simple and generic tool: combining of the Gröbner algorithm for a polynomial ideal
with diagonalization by the action of the O(n) group.

The results of this paper are as follows.

• We simplify the conclusions and discourse.

• We prove that M is prime and has co-dimension is 2
(Sections 2, 5, 5.4)
(the decomposition to primes suggested in [D:I] is erroneous).
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• We prove that the matrices in M having the number n−1 of different eigenvalues
are regular points on M (Section 5.4).
For n = 3 we prove that scalar matrices and only them are singular points on
M (Section 5.6).

• We describe the global structure of the variety M in the n(n + 1)/2 – dimen-
sional space. For a neighborhood of a matrix of maximal spectrum, we describe a
diffeomorphic parameterization as a fibration over a plane.
For n = 3, we also provide a more definite description for M: the straight
cylinder over M0, where M0 is the cone over the so-called “d-torus” (Sections 4,
5.6).

• We give a simple algorithm for deriving a minimal (in total degree) equation system
for M, — and also for any separate orbit, — and provide its output for the case
of n = 3 (Sections 3, 5.1).

So far, we leave un-solved the following problems.
1) Find whether it is true for n > 3 that each matrix in M having narrowed spectrum

is a singular point.
2) For n = 4, find minimal-degree equations for M (the algorithm given below is

rather expensive in computation for n > 3).
3) The structure of the surface M depends mainly on the structure of an orbit

O(A, n) for a matrix A of maximal spectrum in M. Similarly as for n = 3, it would
have sense to find for n = 4, 5 some global description for O(A, n), more definite than
the one that we give in the sequel.

To reduce the main text volume, some of not so interesting proofs in this paper are
moved to Application, and the main part has a few references to Application.

Acknowledgements
The author is grateful to N. V. Ilyushechkin for the problem formulation, and to
Yu. L. Sachkov for some discussion.

2 Several definitions and preliminary constructs

1. Dg denotes the space of diagonal matrices (it has dimension n),
Scal denotes the line of scalar matrices. M is a conic set containing Scal.

2. For a diagonal matrix D, denote D(i) = D(i, i).
diag(a1, . . . , an) denotes the diagonal matrix D having D(1) = a1, . . . , D(n) = an.

A diagonal-ordered matrix is a diagonal matrix D in which D(1) ≤ . . . ≤ D(n).
3. O(n) is (an algebraic and linear) Lie group of orthogonal operators in R

n.
SO(n) is (irreducible and connected) Lie subgroup of rotations in O(n) (determinant
= 1), it has dimension dimSO(n) = n(n− 1)/2.

4. X → g ·X · g−1 is the action of the coordinate (basis) change by an orthogonal
operator g in a matrix (operator) X.

We shall shortly call this conjugation action “change by g”, “changes by operators
from SO(3)”, “changes from SO(3)”, and such.
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And for an orthogonal operator g, there holds g−1 = g∗ (transposed matrix), and
the expression g ·X · g∗ represents the basis change in a symmetric bilinear form X.

For g in O(n), we denote the action of the basis change as

gcX = gc(X) = g ·X · g∗.

Further: g−c denotes (g−1)c, and lφ = T (l, φ)c denotes (for n = 3) the
operator of the change by the rotation operator T (l, φ) for the axis l and angle φ.

In the case of n = 3, we call 1-orbit of a matrix M by the axis l the orbit of M
under the changes by the rotation operators around l.

5. Denote MD the (conic) set of diagonal matrices in M;
for 1 ≤ i < j ≤ n denote Πi,j the plane in Dg defined by the equation D(i) = D(j).
Evidently, MD is union of the number C2

n of (n− 1) -dimensional planes Πi,j .
For example, for n = 3, Π = Π1,2 is all the matrices of the kind diag(λ, λ, µ), while
Π1,3 and Π2,3 are obtained from Π by permutational changes from SO(3).

6. Below, the word “orbit” means: the orbit of a matrix in Sym(n) under the action
of changes by the operators from SO(n); Orbit(A) denotes the orbit of a matrix A.

7. Fix an orthonormal basis Bas = {e1, . . . , en} in R
n, and let us consider the

matrices in Sym(n) as representations in Bas of symmetric bilinear forms. We also
speak of operators from SO(n) given by permutations on the set Bas, or, for example
(in the case of n = 3), being rotations around the axis ei.

8. trace(X) for a matrix X is the sum of the elements on its main diagonal.

Generally, our simple discourse bases on 1) known facts of the linear Lie group
theory, 2) classical

Theorem (DO): for any real symmetric bilinear form there exists an orthogonal
change which brings this form (matrix) to a diagonal matrix

(see, for example, [VW], paragraph 90).
Lemma. For such a diagonalization there are sufficient the operators from SO(n).
Indeed, if gc diagonalizes X, and det g = −1, then the composition g2 of g with the

permutational operator for (e1, e2) belongs to SO(n), and gc
2

diagonalizes X.

Several more definitions
1) The stabilizer St(A) of a matrix A from Sym(n) is the set of operators g, which

changes preserve A. It is a smooth subgroup.
2) The width of the spectrum for a matrix from Sym(n) is the number of its

different eigenvalues.
For a set X in Sym(n), any matrix from X having maximal in X spectrum width we
call a matrix of maximal spectrum (in X ),
and all the rest are called the matrices of narrowed spectrum.

3) Denote MH the set of matrices of maximal spectrum in M — that is having
the spectrum width n− 1. This is a topologically open set in M.

4) Denote Πh
i,j = Πi,j ∩MH.

The following three statements are evident.
(1) The spectrum width of a matrix in M is the spectrum width of its diagonal form.
(2) For a matrix in Sym(n) having all different eigenvalues, the orbit dimension is

dimSO(n),
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matrices of maximal spectrum in M have orbits of maximal (for M) dimension, equal
to dimSO(n) − 1.

(3) If a matrix in Sym(n) has the spectrum width n−1, then its stabilizer is a single-
parameter subgroup of rotations of the plane L(u, v) — for each two non-collinear vectors
u and v belonging to the same multiple eigenvalue.

Example: for n = 3, the diagonal matrices in MH are exactly the matrices of
kind diag(λ, λ, µ) with λ 6= µ, and also the two families obtained from this one by
permutations on the main diagonal.

s-metric
Define an Euclidean metric on the space Sym(n): sum of squares of the elements of a
matrix X. We denote this quadratic form sQuad(X)
and call it s-metric.

In this paper, the expressions “distance”, “angle”, “orthogonality”, “isometry”,
“orthogonal projection”, “circumference”, “sphere”, “circumference center”, “radius”,
“surface diameter”, “straight cylinder” applied to points and subsets in Sym(n) —
are understood in the sense of s-metric.

Lemma S (probably, known).
For any matrix X from L(n) and any orthogonal operator g, it holds the equation

sQuad(X) = sQuad(g ·X) = sQuad(gcX).
That is: the changes from O(n) preserve s-distance and s-angles in L(n).

Proof. An orthogonal operator preserves s-square for each column–vector in X. Hence,
sQuad(gX) = sQuad(X). Similarly, the right-hand side multiplication by g∗ preserves
s-square of each row. Therefore sQuad(gcX) = sQuad(X).

Lemma 1.
(1) Any change from SO(n) maps M on itself.
(2) Scalar matrices are the only fixed points of the action of SO(n) on Sym(n).
(3) M is the union of mutually non-intersecting orbits.
(4) Each diagonal matrix in M is brought by some change from SO(n) to an ordered

diagonal. (that is all the results for permutations applied to the main diagonal of a
matrix in MD are represented by some changes from SO(n)).

(5) Two matrices in M belong to the same orbit if and only if they have the same
eigenvalue multi-set.

(6) For each matrix in M, its orbit has exactly one diagonal-ordered matrix.
(7) 7.1. For each real number t and symmetric matrix M , it holds

Orbit(t ·M) = t · Orbit(M).
7.2. For n = 3, orbits of any two matrices in MH differ from each other in a shift

at some scalar matrix and a homothety by some non-zero factor
(and we use that this transformation preserves angles).

(8) 8.1. Discriminant of a symmetric matrix does not change with adding to this
matrix of any scalar matrix. Any shift by a scalar matrix maps the surface M on itself.

8.2. For each real number s, intersection Ms of M with the hyper-plane trace(X) =
0 is a surface mapped on itself by the changes from SO(n).

M is a straight cylinder over M0 having the line Scal as element.

Proof. The statements (1), (2) and (3) are known and evident.
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Let us prove (4). Let the searched permutation on the main diagonal is presented
by an orthogonal operator g. D has at least two equal elements on the main diagonal.
Hence, the permutational operator g2 for the corresponding basis vector pair has deter-
minant −1. Therefore, either g belongs to SO(n) or the composition g · g2 belongs to
SO(n) and its change brings D to a diagonal-ordered form.

Let us prove the statements (5) and (6). The change action preserves the coefficients
of the characteristic polynomial. Hence, it remains only to prove the second part of the
statement (5). Let A and B have the same eigenvalue multi-set. By Theorem DO
and its additional lemma, A and B are diagonalized by some changes from SO(n). By
the statement (4), they are brought further to a diagonal-ordered matrices. As these
diagonal-ordered matrices represent the same multi-set, they are equal.

This also proves the statement (6).
Let us prove the statement (7). The statement (7.1) is evident. As to (7.2), it is,

evidently, sufficient to prove it for a pair of diagonal matrices in MH. And hence, it is
sufficient to prove it for a pair of matrices (D,D2), where D = diag(0, 0, 1), and D2

is any matrix of kind diag(λ, λ, µ) with λ 6= µ.
D2 is obtained from D by adding of some scalar matrix Sc = diag(a, a, a) and

by homothety by some non-zero number factor b: (D + Sc) · b = D2. For such
representation, it is sufficient to put a = λ/(µ−λ), b = µ−λ. Each change operator
gc is an isomorphism on the algebra of square matrices. In particular, for each square
matrix M there hold the equations

gc(M + Sc) = (gcM) + (gc Sc) = (gcM) + Sc, gc(b ·M) = b · gcM .
Therefore with adding of a scalar matrix Sc to any symmetric matrix, the orbit shifts
at the vector Sc, and with multiplying M by a coefficient b, the orbit is homothetically
multiplied by b.

Let us prove the statement (8). 8.1: Adding a scalar operator µ ·E to a symmetric
operator M shifts the spectrum of M at the number µ. This preserves discriminant,
because the discriminant depends only on the differences of eigenvalues.

8.2: For each real number s, denote Π∗

s the (five–dimensional) plane in Sym(3),
defined by the equation trace(X) = s. Denote Ms = M∩ Π∗

s. Any basis change
operator preserves the matrix trace. Therefore each such plane is mapped on itself by
the changes from SO(n) — as well as each (three–dimensional) restriction Ms.

Further, the surface M is union of the restrictions Ms for all s. Adding of any scalar
matrix s ·E shifts the surface M along itself — because (by the statement (8.1)) this
adding preserves discriminant. This shift maps the plane Π∗

0
on the plane Π∗

s, and maps
the restriction M0 on Ms. Hence, M is the cylinder over M0 having the line Scal as
element. The line Scal is orthogonal to the plane Π∗

0
, as one can see from the s-product

of a scalar matrix by a matrix of zero trace. Hence, this cylinder is straight.
The lemma is proved.

Lemma A0 (probably, known).
Commutator of a diagonal and an anti-symmetric square matrices (of the same size)

is a symmetric matrix having zero diagonal.
Lemma A1 (known). The counter-image M′ of an algebraic set M for a polynomial

map F : Rn → Rm is an algebraic set.
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Lemma A2 (known). For a surjective polynomial map from an algebraic set M
onto an algebraic set M′, if M is prime, then M′ is prime.

Simple proofs for the Lemmata A0, A1, A2 are given in Application.

Theorem “Primality”.
The discriminant surface M is algebraically prime
(that is it is not a union of any two algebraic sets which do not contain each other).
Proof. Consider the map DO : Π × SO(n) → M,

DO((λ, µ1, . . . , µn−2), g) = gc diag(λ, λ, µ1, . . . , µn−2)
(no restriction for the numbers in the first argument). This is a surjective polynomial
map of algebraic surfaces, where the support domain has one dimension more than the
image M. And it is surjective. The algebraic surface Π × SO(n) is prime. Hence, by
Lemma A2, M is prime.

To be fully rigorous, we need to ensure that the image of DO is M. By Theorem
(DO) and its additional lemma, replacing Π with MD makes this map surjective. By
Lemma 1 (4), all MD is obtained from Π by changes from SO(n).

The theorem is proved.

3 General algorithm for minimal–degree equations

for M

Initially, M is defined by a single homogeneous form discr of degree 2n. And it is
natural to search for a smaller–degree equation system for this surface. There exists
a recent work by N. V. Ilyushechkin which represents for the case of n = 3 this
discriminant as a sum of squares of four cubic forms, and displayes these forms explicitly.
Denote this polynomial set IlEs(3). Evidently, for n = 3, M is defined by the system
IlEs(3).

Now, we formulate a generic algorithm for a complete equation system search for the
discriminant surface.

The surface M is defined by the ideal I(M) of all polynomials in the variables Xs
which are zero on M. Let us call this ideal a complete system for M.

Fix the grading by the total degree on this polynomial algebra. There is known the
algorithm of the Gröbner basis [Bu]. Given any finite basis for an ideal in a polynomial
ring (over an Euclidean coefficient ring), this algorithm produces a finite basis for this
ideal minimal by the given grading, and, in a certain sense, canonical. In our case, denote
this Gröbner basis gs. The property of the method is so that if the ideal I(M) contains
any polynomial of total degree less than d, then gs contains a polynomial of total degree
less than d. Therefore, the problem of defining of the surface M by equations of possibly
small degree has its generic and algorithmic solution — if only there is found any finite
basis for a complete system for the surface. For example, {discr} is not a complete basis
in our case, as one can see from the cubic forms IlEs(3).

In general, our method is as follows. If a map F : R
m → M is surjective, then

this defines the maps X(i, j) from R
m for each position (i, j) in the matrix X. Then,

the ideal Rel of all the algebraic relations between the maps {X(i, j)|1 ≤ i ≤ j ≤ n}
is just a complete equation system for M. It remains to formulate the case when a
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parameterization F (not necessary injective, or smooth) allows an algorithm for finding
of a finite basis for Rel.

In our case, we provide as F a certain polynomial parameterization. Namely, build
a diagonal matrix

D = diag(λ, λ, µ1, . . . , µn−2)

and consider its diagonal elements as variables for polynomials with coefficients in R.
Denote Eigs the set of these variables. Further, let the matrix Y of size n×n consist
of the elements

Ys = {yi,j | 1 ≤ i, j ≤ n}.

We denote the variable set: Zs = Ys∪Eigs, and we shall say that the variable set
consists of n2 of o-variables and n− 1 of eg-variables. Consider the matrix product
X = Y ·D · Y ∗, where the factors are considered as matrices over R[Zs].

Evidently, a generic diagonal matrix of M is presented by the above D and also
by the matrices made from D by permutations on the main diagonal. By Theorem
DO, each matrix in M is diagonalized by some orthogonal change. This gives us the
following generic matrix for M:

X = Y ·D · Y ∗.

Here the elements of these matrices are considered as elements of the quotient–ring
QZ of the algebra R[Zs] by the orthogonality conditions for the operator Y . These
conditions form the set

OrtEs = {row(i, Y ). row(j, Y ) = δ(i, j) | 1 ≤ i ≤ j <= n}

— number n(n+ 1)/2 of quadratic equations. Here the expression row(i, Y ) denotes
taking the row No i from a matrix, and the symbol “.” denotes scalar product of two
rows.

The above generic matrixX uses only one matrix from the set of diagonal–permutati-
on results for D, because all the diagonal permutation results in D are expressed by
changes from SO(n).

The generic matrix X (over QZ) is symmetric. The elements X(i, j) (conjugation
classes) have representatives as polynomials in R[Zs]. Now we see that the ideal Rel of
algebraic relations for X(i, j) is a complete equation system for M (this ideal consists
of polynomials in R[Xs] in the variables Xs = {xi,j| 1 ≤ i ≤ j ≤ n}).

Further, there is known a simple algorithm for finding of a canonical basis Rels for
the ideal Rel. It is described in [GTZ] (Corollary 3.2), and it bases, in its turn, on the
Gröbner basis method. This algorithm produces such a basis for the ideal of algebraic
relations that is minimal in the grading and canonical. For example: if there exists a
polynomial of total degree less than three which is zero on the surface M, then the
returned basis Rels also must have such a polynomial.

About the coefficient domain The problem formulation mentions the surface in a
real space and its equations over the real number field. And even for a matrix in M
having rational elements, its eigenvalues are, generally, algebraic numbers.

Nevertheless: discriminant in our problem has integer coefficients, for natural rea-
sons, the obtained system for M has integer coefficients, and all the intermediate com-
putations need only to operate with polynomials having rational coefficients.
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About computer calculation
The algorithm presented above is important independently on a computer device.

For example, it can be evaluated by hand for each given value of n (though, it is difficult
to compute for n > 3). On the other hand, computer evaluation is also interesting and
helpful. We applied for this our common system for computer algebra called DoCon.

Case n = 3
For this argument, we have obtained the result of the above algorithm. It also can

(with some effort) be evaluated by hand, though we skip this exercise. The result is the
system Rels for the surface M containing seven homogeneous cubic equations and one
more equation of degree four.

Note: Rels does not contain any polynomial of total degree less than three. Hence,
the surface M is essentially non-quadratic. This is due to the following property of a
Gröbner basis: if a non-zero polynomial is zero when restricted to M (belongs to I(M)),
then its leading monomial is a multiple of leading monomial of some polynomial in the
basis Rels.

The relation of the system Rels to the equations IlEs(3) is that
1) the ideal I(Rels) contains IlEs(3),
2) square of each polynomial of Rels belongs to I(IlEs(3)).

This membership relation is checked by a certain known simple algorithm. Further,
if Rels has any polynomial that has some power belonging to the ideal of the rest of
the system, then this polynomial can be removed. And let us repeat this simplification
while such a polynomial is found in the current system. There exists a certain simple
algorithm which detects the above relation between a polynomial and a finite set of
polynomials. This process produces a reduced system defining the same surface. In
our example, it shows, again, four homogeneous forms (it prints the left-hand sides of
equations, while the right-hand sides are zero):
RelsS =

{x12^2*x23 -x12*x13*x22 +x12*x13*x33 -x13^2*x23,

x12*x23*x11 -x12*x23*x22 -x13^3 +x13*x23^2 -x13*x11*x22 +x13*x11*x33

+x13*x22^2 -x13*x22*x33,

x12*x13*x11 -x12*x13*x22 -x13^2*x23 +x23^3 -x23*x11^2 +x23*x11*x22

+x23*x11*x33 -x23*x22*x33,

x12^2*x11 -x12^2*x22 -x13^2*x11 +x13^2*x33 +x23^2*x22 -x23^2*x33 -x11^2*x22

+x11^2*x33 +x11*x22^2 -x11*x33^2 -x22^2*x33 +x22*x33^2,

x12^3 -x12*x23^2 -x12*x11*x22 +x12*x11*x33 +x12*x22*x33 -x12*x33^2

-x13*x23*x11 +x13*x23*x33}

Conclusion We
1) present a generic algorithm for minimal–degree equations for M,
2) give its computer result (Rels, RelsS) for n = 3,
3) use the equations IlEs(3) (derived manually and proved by N. V. Ilyushechkin) to
verify our result for n = 3.

Equations for M0

By Lemma 1, M is a straight cylinder over M0. Hence, it is sufficient to describe
the surface M0 — the restriction to the plane x11 + x22 + x33 = 0. x11 is
eliminated, and this results into the system

9



M0eqs =

{x12*x23*x22 +(1/2)*x12*x23*x33 +(1/2)*x13^3 -(1/2)*x13*x23^2 -x13*x22^2

+(1/2)*x13*x22*x33 +(1/2)*x13*x33^2,

x12^2*x22 +(1/2)*x12^2*x33 -(1/2)*x13^2*x22 -x13^2*x33 -(1/2)*x23^2*x22

+(1/2)*x23^2*x33 +x22^3 +(3/2)*x22^2*x33 -(3/2)*x22*x33^2 -x33^3,

x12^2*x23 +(3/2)*x12*x13*x33 -(1/2)*x13^2*x23 -(1/2)*x23^3 +x23*x22^2

+(5/2)*x23*x22*x33 +x23*x33^2,

x12^3 -x12*x23^2 +x12*x22^2 +x12*x22*x33 -2*x12*x33^2 +x13*x23*x22 +2*x13*x23*x33}

— again, four cubic forms, but the variable x11 is eliminated.

Checking computer evaluation
How reliable is computer evaluation for this task? As a rule, large programs have

errors, the same is with the very electronic schemes of computers.
In our example, there are possible, at least, the following relatively easy checks.
1. Discriminant must reduce to zero by the basis Rels (belong to I(Rels)).

Each member of Rels has some degree which is a multiple of discriminant (we expect,
square, or degree four is sufficient).

2. Substituting into Rels of the values xi,j for the matrix D = diag(λ, λ, µ1, . . . , µn−2)
must produce zero polynomial in the variables λ, µ1, . . . , µn−2 — this is easy to check.

3. The matrix X (over the ring QZ) must be symmetric,
its trace must be 2λ+ µ1 + . . .+ µn−2,
its determinant must be λ2 · µ1 · . . . · µn−2.

4 Geometry of discriminant surface in Sym(3)

In the case of n = 3, we have a more definite description of this surface.

(DS3) of the structure of the discriminant surface M in Sym(3,R).
(1) M is a prime algebraic variety of co-dimension 2.

Its singular points are scalar matrices and only them.
M is defined by four cubic forms, and there does not exist a non-zero polynomial of
total degree less than three which is zero on M.
M is union of restrictions Ms, where the restriction for s is expressed by the equation
trace(X) = s.
M is the straight cylinder over M0 having the line parallel to Scal as element.
Therefore, it is sufficient to describe the surface M0 — and its description is as follows.

(2) A three–dimensional surface M0 in a five– dimensional space has the following
structure.

2.1. M0 is the cone, with zero as vertex, over the d-torus; the d-torus is the
orbit of the diagonal matrix diag(1, 1,−2); this two-dimensional orbit resides on the
four-dimensional sphere having center in zero.

2.2. The orbit of each non-scalar matrix in M is a two-dimensional and algebraical-
ly–quadratic surface residing on a four-dimensional sphere; it is diffeomorphic to torus
as a manifold defined by two charts. We call this surface d-torus.
The orbit orthogonally intersects the plane Dg of diagonal matrices, and it has exactly
three common points with Dg.
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It is not contained in any four–dimensional plane.
Also this orbit is defined by four quadratic equations.

2.3. The diameter of the orbit of any non-scalar matrix in M having eigenvalues λ
and µ is |λ− µ|.

(3) The map DO : Π × SO(3) → M, DO((λ, µ), g) = gc diag(λ, λ, µ)
(with no restrictions on λ and µ) is a surjective polynomial map of algebraic surfaces
— from five–dimensional one onto four–dimensional.

(4) A natural smooth parameterization for the surface M0\{0} can be presented
as a direct product of the motion along the element line of this cone by smooth param-
eterization for the orbit of the intersection point of this line with the sphere.
The orbit of each matrix in M is obtained from the orbit of D = diag(1, 1,−2) by
shift at some scalar matrix and by multiplying by some real coefficient.

(5) Intersection of M0 with the plane of diagonal matrixes consists of the three
different lines intersecting in zero. These lines have the following parameterization:
diag(λ, λ,−2λ), diag(λ,−2λ, λ), diag(−2λ, λ, λ).

Half of the proof for this theorem is given by the general theorem of the next Section.

5 Geometry of discriminant surface in Sym(n)

Below, Π denotes the plane Π1,2 of dimension n− 1 in the surface MD.

Theorem (DS) on the structure of discriminant surface M in Sym(n,R).

(1) M is a prime algebraic variety of co-dimension 2.
M is union of the restrictions Ms, where the restriction for s is defined by the
equation trace(X) = s.
M is the straight cylinder over M0 having a line parallel to Scal as element.
Matrices in M having n − 1 different eigenvalues are regular points on M. These
matrices form an open and everywhere dense set MH in M.
We give a simple algorithm (expensive to perform for n > 3) for finding for each given
n of polynomial equations for M having minimal total degree.

(2) Orbits for matrices in M are classified by the eigenvalue multi-set, or — by a
unique diagonal–ordered matrix in the orbit.

(3) MH has the following structure.
3.1. MH is a smooth fibration over the (n− 1)–dimensional plane Πh, with the fiber
being an orbit — smooth compact surface of dimension dimSO(n) − 1.
Each orbit in MH orthogonally intersects the plane Dg of diagonal matrices and has
exactly one common point with each sub–plane in Dg, conjugated with Π by changes
from SO(n) (there are number of C2

n of such sub–planes).
Orbit of a scalar matrix is a single point.
3.2. Orbit of each matrix in MH is a smooth, compact, algebraic, connected surface of
dimension dimSO(n)−1 = (n(n−1)/2)−1. It resides at the sphere in the hyper-plane
orthogonal to the line of scalar matrices. We give a simple algorithm (expensive to
perform for n > 3) deriving from the given eigenvalues of a matrix A in MH equations
for the orbit of A having minimal total degree.
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3.3. Diameter dm of the orbit of a matrix in MH having the eigenvalue multi-set
{λ1, . . . , λn}, is bounded as maxi,j |λi−λj | ≤ dm ≤ 2d(D,Scal), where d(D,Scal)
is the distance from the matrix D = diag(λ1, . . . , λn) to the line of scalar matrices.

(4) The map DO : Π × SO(n) → M,
DO((λ, µ1, . . . , µn−2), g) = gc diag(λ, λ, µ1, . . . , µn−2)
(no restriction for the numbers in the first argument) is a surjective polynomial map

of algebraic surfaces, where the support domain has one dimension more than the image
M.

(5) A smooth atlas on MH can be naturally built as follows.
From each point D = diag(λ, λ, µ1, . . . , µn−2) in MH there flows out the orbit Orbit(D)
of dimension dimSO(n)−1. A smooth parameterization for this orbit in the neighbor-
hood of D is given by “quotientation” of the action of SO(n). Namely, the stabilizer
St(D) is a single-parameter subgroup of rotations of the bi-dimensional plane L(e1, e2).
This orbit is locally diffeomorphic to the homogeneous space SO′ of conjugation classes
by St(D).
A smooth parameterization for a neighborhood of each point of this orbit is by transla-
tion to this neighborhood by some change from SO(n) of the parameterization near D.
A total smooth parameterization for MH is the product of the parameterization for the
orbit of D and motion along a certain plane Π in MD.

Now, let us proceed with the proof.

First, recall that the statement (4) and the primality statement are proved earlier,
in Theorem “Primality”.

5.1 Investigating an orbit by orthogonal changes

Lemma 2.
(1) If A is a non-scalar matrix in Sym(n), then its orbit intersects orthogonally the

plane of diagonal matrices.
(2) Orbit of any matrix in Sym(n) resides in the hyper-plane orthogonal to the line

of scalar matrices.
(3) Orbit of any matrix in MH is a smooth, compact, algebraic, connected surface

of dimension dimSO(n) − 1 = (n(n− 1)/2) − 1.
Dimension of an orbit for a matrix A in M is 0 for a scalar A, dimSO(n)− 1 — for
a matrix of maximal spectrum, a number 0 < d < dimSO(n) − 1 in other cases.

Proof.
(1): Due to the symmetry by the group action and due to diagonalization, it is

sufficient to prove this statement for an orbit of a diagonal matrix D. Also it is sufficient
to prove the statement (A): each tangent vector for the orbit of D in D is some matrix
M having zero diagonal. Then, by definition of the quadratic form sQuad, it will
follow that sQuad(D1,M) = 0 for each diagonal matrix D1.

Now, prove (A). The tangent space T to the orbit of D in D consists of all the
commutators of D with operators from the Lie algebra so(n), and this algebra consists of
anti-symmetric matrices. Therefore, by Lemma A0, each matrix in T has zero diagonal.
The statement (1) is proved.
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(2): suppose the matrix A in Sym(n) is not scalar, and Π∗ is the hyper-plane
orthogonal to the line Scal and containing A. Let A0 be the base of this projection of A.
By Lemma S, orthogonal changes preserve angles and distances in Sym(n). Each point
in Scal is a fixed point with respect to these changes. Therefore Π∗ is mapped by these
changes onto itself, the orbit of A resides in Π∗, and its points are equally–distant from
A0.

(3): orbit of each matrix A in M is an algebraic surface. Because let EV(A) be the
eigenvalue multi-set for A. By Lemma 1 of Section 2, the orbit for A consists exactly of
the matrices in M which eigenvalue multi-set is EV(A). And this latter condition on a
matrix X is equivalent to the following system of n+ 1 equations on X:

discr(X) = 0,
ci(X) = sig(i) · elSymi(ev(A)), 0 ≤ i ≤ n− 1.
These equations, — except the first one, – are the Viete expressions for a polynomial

coefficients via its roots, in which there are substituted the values for the roots. Here
ci(X) is the coefficient of degree i in the characteristic polynomial for X — a

polynomial in the variables–elements of X,
ev(A) is the number sequence made of the values of the multi-set EV(A), with

repetitions of multiple values,
elSymi is the elementary symmetric polynomial of degree n− i,
sig(i) is the appropriate sign: plus or minus.

Minimal equations algorithm for orbit of a matrix in M
When given the value n and the values a, b1, . . . , bn−2 for the variables λ, µ1, . . . , µn−2,
a minimal system for the orbit of a matrix in M having this eigenvalue multi-set is
obtained as follows. In the algorithm of the Section 3, add the following linear equations
to the orthogonality conditions on the matrix Y : λ = a, µ1 = b1, . . . , µn−2 = bn−2.
And further, it is applied the same algorithm for finding relations. Evidently, this
produces a degree–minimal equation system for the orbit.

Further, the orbit of A is a prime, connected and compact algebraic surface. Because
the map

DOA : SO(n) → Orbit(A), DOA(g) = gcA

is a polynomial map of algebraic surfaces. By definition of an orbit, its image is Orbit(A),
and the group SO(n) is compact and connected. Hence, primality of Orbit(A) follows
from a) that SO(n) is prime, b) that DOA is a polynomial map onto whole Orbit(A),
c) Lemma A2.

So: the orbit for A is an algebraic, prime, compact, connected surface contained in
some sphere inside a hyper-plane Π∗. The minimal dimension for an embracing plane
depends on the multiplicities in the spectrum of A.

The further discourse in this lemma (on a smooth parameterization of an orbit) we
provide only for the case of a matrix A of a maximal spectrum in M. This is sufficient
for the main two theorems in this paper.

Let Bas = {e1, . . . , en} be the basis consisting of the eigenvectors of A, and the
vectors e1 and e2 belong to the same eigenvalue. Then the stabilizer St(A) is a single–
parameter subgroup of rotations in the two-dimensional plane L(e1, e2). It is known
from the Lie group theory that in this case the orbit of A is locally diffeomorphic to
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a smooth surface — homogeneous space SO′ of conjugated classes in SO(n) modulo
St(D), having dimension dimSO(n) − 1.

Due to the action of SO(n), small neighborhoods of all points of the orbit are iso-
metric. This provides an atlas for a smooth parameterization of the orbit.

Although a smooth parameterization of the orbit is proved, — by a reference to
the general Lie group theory, — still we provide in Application a certain more definite
description of parameterization for the case of n = 3.

5.2 Orbit structure details in the case of n = 3

Two definitions:
1) for a point M in an affine space and for a vector subspace L, Π(M,L) is the

plane with the subspace L, containing the point M .
2) The expression “subspace of 1-orbit” means the vector subspace of the plane of

1-orbit.

Lemma ST.
In the case of n = 3, the following holds for orbit of any non-scalar matrix A in M.
(1) This orbit resides on the four-dimensional sphere (in a five-dimensional plane)

and is diffeomorphic to a torus as a manifold of two charts.
This is a bi-dimensional, algebraically–quadratic surface. It resides in the hyper-

plane orthogonal to the line of scalar matrices and it is not contained in any four-
dimensional plane.

This orbit is union of a smooth single-parameter family of circumferences of the same
radius having a common point A.

The orbit orthogonally intersects the plane Dg of diagonal matrices, and it has
exactly three common points with Dg.

(2) This orbit is described by four quadratic equations in the variables x2,2, x3,3,
x1,2, x1,3, x2,3 of the elements of a matrix X in Sym(3).

(3) The orbit diameter for a matrix in M having the eigenvalues (λ, λ, µ) is |λ−µ|.

We call this orbit a d-torus.

Proof. Due to the group action and by the statement (7) of Lemma 1, it is sufficient
to prove Lemma ST for the diagonal matrix D = diag(1, 1,−2).

Let us prove the statement (1).
Consider first the 1-orbit of D by the axis e1. This is a circumference (residing in its

bi-dimensional plane), which we denote Cir1. This is visible from the explicit formulae
for a change in D by a rotation around e1. The general matrix of this 1-orbit is

C1G = eφ
1
D =

[[1, 0, 0 ]

[0, c^2 -2*b^2, -3*c*b ]

[0, -3*c*b, -2*c^2 +b^2]],

where c = cosφ, s = sinφ. The only diagonal matrices in this circumference
are D and D2 = diag(1,−2, 1). When the angle φ changes from zero to π/2, the
matrix C1G passes (without repetition) the arc from D to D2. At this stage, the matrix
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element C1G(2, 3) first changes monotonously from zero to −3/2, and then changes
monotonously back to zero. When the angle φ changes from π/2 to π, the matrix C1G
passes (without repetition) the arc from D2 to D; this is the “lower” half of the 1-orbit,
it differs from the upper half only in the sign of the element C1G(2, 3).

The subspace L1 of the 1-orbit Cir1 is linearly generated by the vector D2−D and
the tangent vector to Cir1 in the point D. After norming by the factor −3, these two
vectors produce the following basis for the space L1:

M1 = diag(0, 1, -1), M2 = [0, 0, 0]

[0, 0, 1]

[0, 1, 0].

Now, let l be the axis in the space L(e1, e2) obtained from e1 by rotation at an angle
ψ around e3, let h be the operator of this rotation. Then the 1-orbit Cir(ψ) for D by l
is a circumference containing D and isometric to Cir1; this isometry is the operator hc

(in the space Sym(3)), and it also maps the plane L1 to the plane L(ψ) of the 1-orbit
Cir(ψ). This property holds due to that the operator hc conjugates the subgroups G(e1)
and G(l). Therefore, for these two 1-orbits it holds the equation

Orbit(l)D = hc Orbit(e1)(h
−cD).

But in this case, h is a rotation around e3, and D = diag(1, 1,−2). Hence h com-
mutes with the operator D, and the relation between these two 1-orbits is simplified:
Orbit(l)D = hc Orbit(e1)D. That is these 1-orbits are conjugated by h.

So, it appears that the orbit for D contains the union of a smooth single-parameter
family of circumferences of the same radius, all containing the point D. Let us also
note that the plane Π(ψ) of 1-orbit in this family turns dependently on ψ in various
directions in a five-dimensional space. We shall see later that Orbit(D) is union of these
circumferences.

Now, let us parameterize the standard torus as usual, with the angles
0 ≤ φ, ψ < 2π. And consider the map

AxR(φ, ψ) = l(ψ/2)φ/2D

from this torus to the Orbit(D). Here l(α) = eα
3
(e1) is the axis obtained from e1 by

rotation around e3. Evidently, AxR is a smooth map. And the circumference φ = 0 is
a particular subset for this map: it is mapped to the point D.

Let us call the half-torus this torus minus the circumference of φ = 0.
Evidently, half-torus is diffeomorphic to a cylinder.

With changing the angle ψ in the torus parameterization, the axis l takes the fol-
lowing remarkable values. ψ = 0 corresponds l = e1 and the 1-orbit Cir1 containing
the matrices D and D2 = diag(1,−2, 1).

ψ = π corresponds to the axis l(π/2) = e2 and 1-orbit Cir2 containing the matrices
D and D3 = diag(−2, 1, 1).

In the Lemma ATor in Application, it is proved that 1) rank AxR = 2 everywhere
on the half-torus, 2) AxR maps bijectively the half-torus on Orbit(D)\{D}.

On the other hand, we suggest to take these two statements as evident.
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This provides the first chart for a diffeomorphism from the torus onto the orbit. The
second chart is presented by the map

El(φ, ψ) = e
ψ/2
2
eφ
1
D, −π/4 < φ < π/4, 0 ≤ ψ < 2π

— composition of the change by a rotation around e1 and the change by a rotation
around e2. This is a smooth map onto a neighborhood of the point D in the orbit from
the second half-torus. This second half-torus contains the circumference φ = 0. This is
not difficult to find the tangent operator for this map in the point D and to see that it
has rank two on the circumference φ = 0 on the torus (and hence, on some neighborhood
of this circumference). Therefore these two overlapping charts (which union is the whole
torus) define a diffeomorphism from the torus to the manifold of the orbit of the matrix
D.

But the metrical properties of the orbit are more complex.
For example, the orbit of the above matrix D is not contained in any four-dimensional
plane.

The simplest way to see this is to consider an embracing plane for the orbit of
D = diag(0, 0, 1). Because by the statement (7) of Lemma 1, the latter orbit differs
metrically from the former only by a homothety by a non-zero factor.

It is easy to compute that the tangent space to the orbit in the point D is generated
by the vectors

[0 0 0] [0 0 1]

T1 = [0 0 1] and T2 = [0 0 0]

[0 1 0] [1 0 0].

These are the results of changes in D by infinitely small rotation around e1 and
around e2 respectively, they are obtained by commuting the matrix D with two (anti-
symmetric) matrices from a basis of the Lie algebra so(3).

Also the orbit contains the matrices D2 = diag(0, 1, 0) and D3 = diag(1, 0, 0).
Respectively, the tangent space in D3 contains the vector

[0 1 0]

B = [1 0 0]

[0 0 0].

Denote D2′ = D2 −D, D3′ = D3 −D.
If a plane L contains the orbit for D, then L contains the point D and also the

directions T1, T2, B, D2′ = diag(0, 1,−1), D3′ = diag(1, 0,−1). The vectors T1,
T2 and B are mutually orthogonal (recall the s-metric). The vector Di′ is orthogonal
to T1, T2 and B for i = 2, 3, and the vectors D2′ and D3′ constitute a staircase
matrix of rank two. So: the above five directions are linearly independent and belong
to each plane containing the Orbit(D).

This conclusion on an embracing plane dimension shows, in particular, that the orbit
is not isometric, for example, neither to sphere nor to standard torus.

Let us prove the Lemma statement about quadratic equations.
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A general algorithm for finding minimal equations for the orbit of D is described
earlier, in the Section (3) and in the proof for Lemma 2. In the case of n = 3 the
computation is not expensive. Let us print its result for the matrix

D = diag(1, 1,−2).

For any other matrix in MH, the orbit geometry differs only in homothety by a non-zero
factor (by the statement (7) of Lemma 1).

In this example, the orbit resides in the hyper-plane Π∗, defined by the equation
x11 + x22 + x33 = 0 (and orthogonal to the line Scal), and it resides on the four-
dimensional sphere having its center in zero. The algorithm derives the following equa-
tions for this orbit:

orbitEqs = {x11 + x22 + x33, -- x11 is eliminated

x23^2 - x22*x33 + x22 + x33 - 1,

x13^2 + x22*x33 + x33^2 - x22 - 1,

x12*x33 - x13*x23 - x12,

x12^2 + x22^2 + x22*x33 - x33 - 1}

— four quadratic equations for the variables x22, x33, x12, x13, x23 defining a
bi-dimensional smooth surface in a five-dimensional plane.

The lemma is proved.

5.3 Parametric equations for 1-orbit.

Analyzing and checking the orbit equations

Bringing to main axes in some of the above equations and summing some of them shows
that the orbit is intersection of 1) cylinder (with the element space L(x12, x13)) over
a straight circular cone, 2) cylinder over an ellipsoid, and so on.

Our impression is that, first, it is difficult to understand the orbit structure in this
way. Second, it is remarkable that the equations in the system are quadratic. Third,
this orbit is the image of a certain complex injection of a torus. Therefore, to verify
this computer evaluation result, — and also for the algorithm demonstration, — let us
apply certain interesting additional checks and computations.

In passing, we also derive a generic parametric equation system for an 1-orbit.
First, find, in what way the equations orbitEqs contain the circumferences in the

d-torus, having a common point D = diag(1, 1,−2) and being the 1-orbits by the axes
l — as it is described in Lemma ST.

Define an axis l by a real number k, putting that the vector v of this axis is v =
e1 + ke2. So: 1) the axis passes though the right-hand half-plane,
2) k = 0 corresponds to l = e1, 3) k = ∞ corresponds to l = e2.

Further, for a negative k, the orbit by the axis l(k) differs from the orbit by l(−k)
only in the sign of the element X(1, 3) of the current matrix. This will be visible from
the parametric formula for an 1-orbit derived below.

The orbit equations are derived by applying the algorithm of the Section 3. Further,
to obtain equations for the 1-orbit by l, it suffices to add the fixed–axis condition to the
orthogonality conditions on the operator Y in the algorithm. The fixed-axis condition
is Y (e1 + ke2) = e1 + ke2 — three linear equations. Here k is a parameter, and the
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algorithm operates with polynomials having rational functions in k as coefficients. And
the result equations depend explicitly on the parameter k.

In this example, the algorithm produces a minimal-degree basis for the ideal of
relations for the elements X(i, j) of the matrix. And by Lemma ST, we expect to see
a relation basis defining a circumference in the plane L(l). The algorithm prints the
following equations for an 1-orbit:

1-orbitEqs = { x11 + x33*k^2/(k^2+1) + (k^2-1)/(k^2+1),

x22 + x33/(k^2+1) + (-k^2+1)/(k^2+1),

x13 + k*x23,

x12 - x33*k/(k^2+1) - 2*k/(k^2+1),

x23^2 + x33^2/(k^2+1) + x33/(k^2+1) - 2/(k^2+1) }

Hence, the general matrix of 1-orbit is

[-x33*k^2/(k^2+1) +(1-k^2)/(k^2+1), x33*k/(k^2+1) + 2*k/(k^2+1), -k*x23]

[-- -x33/(k^2+1) + (k^2-1)/(k^2+1), x23 ]

[-- -- x33 ]

Here wild-card denotes the elements under the main diagonal in this symmetric
matrix. And separating of a complete square in the last equation shows that the variables
x23 and x33 are bound with the ellipse:

(k^2+1)*x23^2 + (x33+1/2)^2 = 9/4 (E).

The elements X(i, j) are expressed linearly though x23 and x33. So, we see that
each 1-orbit is an ellipse which is the projection of the ellipse (E) to the corresponding
plane. This agrees with the statement of the Lemma ST about the circumference family.
One could continue this test and make sure that this ellipse is a circumference of the
same radius square (9/4), as Cir1 from the proof of Lemma ST.

Further, for the equations 1-orbitEqs there are the two remarkable values for k:
zero and infinity. k = 0 must produce the equations for the circumference Cir1. This
substitution yields the matrix

[1, 0, 0 ]

[0, -x33-1, x23]

[0, x23 x33], x23^2 + (x33+1/2)^2 = 9/4 (E1).

This coincides with the parameterization for the circumference Cir1 from Lemma
ST. And the equation (E1) must express the equality detX = −2 = detD. To check
this, compute det(X) + 2 modulo (E1). Indeed, its result is zero.

With k approaching infinity, l has the limit e2, and there must appear the equations
on the 1-orbit of D by e2, and this orbit must be the circumference Cir2, of the same
radius. The equations 1-orbitEqs contain the relation x13 + k*x23 = 0. For infinite
k, let us choose x13 as the independent variable, and express x23 as -x13/k. With
this, substituting in the equations 1-orbitEqs of the limit k = +∞ produces the
generic matrix

[-x33-1, 0, x13]

X = [0, 1, 0 ]

[x13, 0, x33],

with the condition ((k^2+1)/k^2)*x13^2 + (x33+1/2)^2 = 9/4. This condition is
equivalent (under the given limit for k) to the equation x13^2 + (x33+1/2)^2 = 9/4.
And this coincides with the parameterization for the circumference Cir2 in Lemma ST.
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5.4 Smooth parameterization for the surface MH

Let us prove the statement (5) of Theorem DS.
Due to the action of the group SO(n), it is sufficient to build a smooth parameter-

ization of M for a neighborhood of a diagonal matrix D in MH having D(1) = D(2).
Recall that Π = Π(1, 2) is the plane of diagonal matrices D in M satisfying the
condition D(1) = D(2).

Let us parameterize a neighborhood U of a matrix D in the plane Π in MD by
the vector of n eigenvalues of spectrum width n− 1: diag(λ, λ, µ1, . . . , µn−2). Consider
the polynomial map

DO : Π × SO(n) → MH,

DO((λ, µ1, . . . , µn−2), g) = gc diag(λ, λ, µ1, . . . , µn−2).

By the statement (4) of Theorem DS proved earlier, Orbit(D) is a smooth surface of
dimension dimSO(n) − 1. And its proof includes a local parameterization of this
orbit by the conjugation classes by the stabilizer St(D), where this stabilizer consists
of rotations of the bi-dimensional plane L(e1, e2). Consider the map DOq which differs
from DO in that operator g in the argument is taken not from SO(3) but from the
space of the conjugation classes by the stabilizer. Fixing the first argument in DOq to
correspond to D, we obtain a local parameterization for Orbit(D).

In the neighborhood U the values in the vector (λ, µ1, . . . , µn−2) remain different.
Hence, in U all the matrices have the same vector of eigenvalue multiplicities as D:
(2, 1, . . . , 1). Hence, all the matrices in this neighborhood (in Π) have the same sta-
bilizer in SO(n). And it was proved earlier that the orbit intersection with the plane
of diagonal matrices is orthogonal. Due to all this, it is evident that DOq is a smooth
parameterization of a neighborhood of the matrix D in M (this is the same as in MH).

The statement (5) is proved.

Corollary about dimension of M
In particular, dimension of M is dim(Π) + dim(Orbit(D)) =

n− 1 + dimSO(n)− 1 = n+ (n(n− 1)/2)− 2 = n(n+ 1)/2− 2 = dim(Sym(n))− 2.

Therefore (for each n), co-dimension of M is 2.
So, MH is represented as a smooth fibration of co-dimension 2 over a (n − 1)–

dimensional plane with the fiber being an orbit and a smooth, algebraic, compact,
connected surface of dimension dim(SO(n)) − 1.

5.5 Bounds on an orbit diameter

Let us prove the statement (3.3) of Theorem DS. We need to derive bounds on the
orbit diameter for a matrix in MH. Such a matrix is diagonalized by some change in
SO(n), and this change preserves distances. Therefore it is sufficient to prove bounds
for a diagonal matrix D = diag(λ1, . . . , λn) in MH. Let i and j be so that the value
|λi − λj| is maximal for all the pairs of the eigenvalues of D. Orbit(D) contains all
the results of changes in D by rotations of the plane L(ei, ej). With these changes, the
result matrix passes through a circumference of the radius |λi−λj |/2. This proves the
first inequality of the statement (3.3).

19



The upper bound of this statement follows from that (by Lemma 2), the orbit resides
on the hyper-sphere with the center in the scalar matrix, being the projection ofD to the
scalar line. Hence, the diameter of this sphere is an upper bound on the orbit diameter.
This proves the statement (3.3).

A detail: the diameter square of the above sphere is expressed via the eigenvalues
as (λ1−m)2+ . . .+(λn−m)2, where m is the arithmetical mean value for the numbers
λ1, . . . , λn.

5.6 Proof for the structure of M for n = 3

By statement (8) of Lemma 1, M is a straight cylinder over the surface restriction M0.
So, it remains to find the geometric structure of M0. The eigenvalue multi-set of each
matrix in M0 is of the kind {λ, λ,−2λ}. By statement (7.2) of Lemma 1, the orbit
of such a matrix is obtained from the orbit of the matrix D = diag(1, 1,−2) by the
homothety by the factor λ. Therefore, M0 is the cone with its vertex in zero and its
base being a d-torus — Orbit(D). This (bi-dimensional) d-torus (Section 5, Lemma ST)
resides on a four-dimensional sphere S4 with center in zero.

Any diagonal matrix belonging to M0 is of one of the following kinds: D(λ) =
diag(λ, λ,−2λ) — and also the falilies D2(λ) and D3(λ) obtained from D(λ) by per-
mutations on the main diagonal.

Remarks: 1) For each λ, the matrices D(λ), D2(λ) and D3(λ) belong to the
same orbit; 2) D(1) and D(−1) are central–symmetric points on the sphere S4, but
they belong to different orbits; 3) Intersection of M0 with the sphere S4 is union of
Orbit(D(1) and Orbit(D(−1)).

Theorem.
Zero matrix is the only singular point on the surface M0.
Proof. Regularity of any non-zero matrix in M0 is proved earlier, in Subsection 5.4.

And zero is singular because 1) M0 is a cone with vertex in zero, 2) we present four
(straight) lines, intersecting in zero, belonging to M0, and having linearly independent
directions. The two of them are the lines, connecting the point 0 with the matrices
D = diag(1, 1,−2) and D2 = diag(1,−2, 1) respectively. Further, the orbit of the
matrix D contains the 1-orbit for D by the axis e1. This is a circumference containing
the matrices D and D2, so that D corresponds to the angle 0, and D2 corresponds the
angle π/2, and these two are the only diagonal matrices in this 1-orbit. For the proof,

we also need some non-diagonal matrices. For example, e
π/4
1
D is the matrix

[1 0 0 ]

M1 = [0 a b ]

[0 b -a-1], a = -1/2, b = -3/2.

Similarly, the 1-orbit for D by e2 contains the matrix

[a 0 b ]

M2 = [0 1 0 ]

[b 0 -a-1]

— with the same a and b. It is easier to see linear independence of the sym-
metric matrices D, D2, M1, M2 if we represent each of them in the row–vector form:
[X(i, j)| 1 ≤ i ≤ j ≤ 3] — with skipping the sub-diagonal part of the matrix. This
produces the matrix of the four rows:
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[1, 0, 0, 1, 0, -2 ]

[1, 0, 0, 0, -2, 1 ]

[1, 0, 0, a, b, -a-1]

[a, 0, b, 1, 0, -a-1].

The first loop of clearing of the first column in the staircase form algorithm produces
the matrix

[1, 0, 0, 1, 0, -2 ]

[0, 0, 0, -1, -2, 3 ]

[0, 0, 0, a-1, b, -a+1]

[0, 0, b, 1-a, 0, a-1 ]

Further, the fourth row is moved to the second place, and to the third row it is added
the second row multiplied by a-1. This produces the matrix

[1, 0, 0, 1, 0, -2 ]

[0, 0, b, 1-a, 0, a-1 ]

[0, 0, 0, -1, -2, 3 ]

[0, 0, 0, 0, b2 a2 ].

Here b 6= 0, b2 = b - 2(a-1) = -3/2 - 2(-3/2) 6= 0. Hence, the matrices
D, D2, M1, M2 are not linearly dependent. So, we have found such four straight lines
in the surface M0 which are linearly independent and intersect in zero. Therefore, zero
is a singular point in M0. Let us explain why it is singular. All other points of this
surface are regular, and the tangent space in each of non-zero points has dimension
three. To prove by contradiction, suppose that zero in regular. Then, by the definition
of a regular point, some neighborhood of zero in M0 is diffeomorphic to a ball in R

3.
Such a ball cannot contain four linearly independent directions which we have found.
This contradiction shows that zero is a singular point in M0.

Theorem DS3 is proved.
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6 Application

6.1 Several lemmata

Lemma A0 (probably, known).
For a diagonal quadratic matrix D and an anti-symmetric matrix A of the same size,

the commutator [D,A] is a symmetric matrix having zero main diagonal.
Proof. Symmetry of the result matrix is proved by the following equations:

(DA−AD)∗ = (DA)∗ − (AD)∗ = A∗D∗ −D∗A∗ = (−A)D −D(−A) = DA− AD.

Further, denote Di the diagonal matrix in which D(j) = δi,j for all j. Each diagonal
matrix is a linear combination of the matrices Di. And as commutator is a bi-linear
map, it is sufficient to prove the goal for the commutator [A,Di] for each i. The given
matrix A has zero main diagonal, and it is visible that A ·Di and Di · A have zero
main diagonal. Therefore, their sum has zero main diagonal.

Example:

|0 1|*|a 0| - |a 0|*|0 1| = |0 b| - |0 a| = |0 b-a|

|-1 0| |0 b| |0 b| |-1 0| |-a 0| |-b 0| |b-a 0 |.

Lemma A1 (known).
For any polynomial map F : Rn → Rm, counter-image M′ of an algebraic set M

is an algebraic set.
Proof. Let M be the set of zeroes of polynomials {p1, . . . , pk}. Then M′ is the set

of zeroes for the set of compositions {p1(F (X)), . . . , pk(F (X))}. Indeed, if A belongs
to M′, then F (A) belongs to M; then pi(F (A)) = 0 for all i.

Conversely: if pi(F (A)) = 0 for all i, then F (A) belongs to M, hence A belongs to
M′.

Lemma A2 (known).
For a surjective polynomial map from an algebraic set M onto an algebraic set M′,

if M is prime, then M′ is prime.
To prove by contradiction, suppose that M′ is union of algebraic sets M1 and M2,

none of which contains another. By Lemma A1, the counter-images T1 and T2 of M1

and of M2 respectively are algebraic sets. Also it holds M = T1 ∪ T2. And as none of
M1 and M2 contains another, their counter-images are in the same relation. This proves
the lemma.

6.2 Addition to Lemma 2.

a) St(A) is not a normal subgroup, and a linear complement in the Lie algebra to the
tangent space for this subgroup is not closed by commutator.

b) Although a smooth parameterization is already proved (by a general reference to
the Lie group theory), still let us describe a local smooth parameterization by a more
definite construct, and for simplicity, consider only the case of n = 3.

Due to translations by SO(3) on the orbit, it is sufficient to define a smooth pa-
rameterization for an orbit of a diagonal matrix D = diag(a, a, b), with a 6= b, in a
neighborhood of D.
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In this case, the stabilizer St(D) is the subgroup of rotations around e3. Let χ3 be the
tangent vector in unity to St(D), let χ1 and χ2 be the tangent vectors in unity to the
(uni-parametric) subgroups of rotations around e1 and e2 respectively. The sub-space
V = L(χ1, χ2) does not contain the vector χ3 (but it is not closed by commutator).

Let expV be the map exp of the operator exponent considered in restriction to
V . expV maps V to a bi-dimensional surface inside SO(3). There is also the map
C : SO(3) → Sym(3) of the group action: C(g) = gcD.

The composition CE(A) = C(expV (A)) is a map from V to Sym(3), having image
inside M. It also is a composition of a pair of smooth maps and has rank two in zero.
The latter holds due to the following two reasons.
1) The infinitely small rotation around e1 affects only the rows No 2 and 3 in the matrix
D, and in the tangent map, the image element at the position (1, 3) is zero, and the
element at (2, 3) is b− a.
2) The infinitely small rotation around e2 affects only the rows No 1 and 3 in the matrix
D, and in the tangent map, the image element at the position (1, 3) is b − a, and the
element at (2, 3) is zero.

So, this produces a diffeomorphism from a neighborhood Ve in a bi-dimensional plane
onto a neighborhood in the orbit of D.

For the case of arbitrary n, — in a similar way, — the tangent vector to the stabilizer
has a linear complement V of dimension dimSO(n) − 1, and there is considered the
parameterization map A→ T (expV (A)).

6.3 Lemma ATor

The orbit of the matrix D = diag(1, 1,−2) by changes of SO(3) is diffeomorphic to
the (bi-dimensional) torus.

Here we need to provide a detailed proof for the statement of Lemma ST about the
two charts of diffeomorphism. First, prove that the second chart El is a diffeomorphism
from the half-torus to a neighborhood of the point D on the orbit.

It is known that the Lie group SO(3) is parameterized by the Euler angles. So that
any operator in SO(3) is e2.ψ ·e1.φ ·e3.χ, where l.φ denotes the rotation at the angle φ
around the axis l. Each rotation around e3 commutes with the operator D. Therefore,
Orbit(D) is parameterized by the formula eψ

2
eφ
1
D — in the denotations of the Section

2. It is known that the map of the Euler angles diffeomorphically parameterizes the
surface SO(3) — without the pole. In our case, the pole is at the angle φ = π/2 in our
latter formula with the two rotations. It corresponds to the matrix D2 = diag(1,−2, 1)
in the orbit, which is a fixed point for rotations around e2.

In the chart El, the angle φ for rotation around e1 changes near zero, without reaching
the pole. Therefore, the chart El described in Lemma ST is a diffeomorphism from the
second half-torus to a neighborhood of the point D on the orbit.

Now, prove that the chart AxR is a diffeomorphism from the first half-torus to the
orbit without the point D. This parameterization of the orbit part is a combination of
rotation of the axis at the angle ψ/2 from e1 to the axis l and the change by rotation
around l at a non-zero angle φ/2. Let us prove that this map has rank two everywhere
at the torus where φ 6= 0.
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As we have seen in Lemma ST, the changes in D by rotations around e1 and around
l(ψ) respectively are related by the formula of the 1-orbit conjugation: l(ψ)φD =
eψ
3
eφ
1
D. The map e−ψ

3
is an isometry on the space Sym(3), and also it maps isometrically

the image of the map AxR onto itself, and with this, the 1-orbit D by l(ψ) maps onto
the 1-orbit by e1. Therefore, the statement about rank AxR is sufficient to prove for
all points M of the 1-orbit of D by e1.

This parameterization in the neighborhood of the matrix M = eφ
1
D is a combination

of a small shift along the circumference Cir1 (of 1-orbit by e1) and a small rotation of
this circumference (together with its plane in R

5) corresponding to the rotation of the
axis.

The partial derivative of M by φ is a tangent vector to the circumference Cir1, it is
a non-zero vector in the subspace L1. In the Lemma ST, it is derived a basis for L1:

[0, 0, 0]

M1 = diag(0, 1, -1), M2 = [0, 0, 1] (M1M2).

[0, 1, 0]

It is sufficient to prove that the partial derivative of M by ψ at the point ψ = 0 is
a non-zero vector orthogonal to the vectors M1 and M2. This derivative is the change h
of infinitely small rotation around e3 in some matrix in the subspace L1. The infinitely
small rotation around e3 is represented by the matrix

[0 1 0]

A = [-1 0 0]

[0 0 0].

The action of h at M1 is the commutator

[0 1, 0]

C1 = [A, M1] = [1, 0, 0]

[0, 0, 0],

and this result is orthogonal to M1 and to M2. The action of h at M2 is the commutator

[0 0 1]

C2 = [A, M2] = [0 0 0]

[1 0 0],

and this result is orthogonal to M1 and to M2. The partial derivative of AxR by the
axis rotation is obtained by applying h to some non-zero vector in the subspace L1.
Each non-zero vector v in L1 is a linear combination of M1 and M2. Respectively, hv
is the same linear combination of the vectors C1 and C2, and it is a non-zero vector
orthogonal to the subspace L1.

This proves the statement about rank AxR.

Let us prove injectiveness of the map AxR.
Sub-Lemma. For each 0 < ψ < π, intersection of 1-orbit of the matrix D by

the axis l(ψ) with the plane Π(D,L1) (of 1-orbit by e1) consists only of the point D.
Proof. In the Section 5.3 it is shown a generic (symmetric) matrix of this 1-orbit:

GO = [-x33*k^2/(k^2+1) +(1-k^2)/(k^2+1), x33*k/(k^2+1) +2*k/(k^2+1), -k*x23]

[-- -x33/(k^2+1) +(k^2-1)/(k^2+1), x23 ]

[-- -- x33 ],

(k^2+1)*x23^2 + (x33+1/2)^2 = 9/4 (E).
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And due to the condition on ψ, we have here k 6= 0. For L1 it is known a basis
{M1, M2} given by the formulae (M1M2). So that the plane Π = Π(D,L1) consists of
all symmetric matrices of kind
GM’ = diag(1, 1,−2) + a diag(0, 1,−1) + b M2 =

[1, 0 0 ]

[0, 1+a, b ]

[0, b, -2-a],

where a and b are any real numbers. Therefore, if an instance of the family GO
belongs Π, then x23 = 0, and this instance is

GO’ = [1, 0, 0 ]

[0, A(x33), 0 ]

[0 0 x33], x33 + 1/2 = +- 3/2.

The trace must be zero, hence, A(x33) = -x33-1, and GO’ =

diag(1, -x33-1, x33). It remains to verify that among the two values for x33, fits
(−2) and only it.

For x33 = -2, the family GM’ is satisfied under a = b = 0. The family GO (with
substitution of x23 = 0) produces the expressions in k which simplify to the matrix
diag(1, 1,−2).

Further, the substitution x33 = 1 (and x23 = 0) in GO yields the matrix family
having at the position (2, 3) the expression k/(k2+1)+2k/(k2+1). As GO’(1,2) = 0,
then k = 0, and this contradicts the Sub-lemma condition on the angle ψ. Therefore,
in the intersection of the orbit with the plane Π, the matrix family instances for GO and
GM are equal D.

The Sub-lemma is proved.
Continue the proof of injectiveness of the map AxR. Proving by contradiction,

suppose that AxR(φ1, ψ1) = AxR(φ2, ψ2) for some 0 < φ1, φ2 < 2π, 0 ≤ ψ1 ≤ ψ2 <
2π. In the case of ψ1 = ψ2, it comes out that the values of the parameters φ1 and φ2

correspond to the same point of the circumference Cir(ψ), and it follows then φ1 = φ2.
There remains the case of ψ1 < ψ2. Denote O1,2 intersection of 1-orbits of the

matrix D by the axes l1 = l(ψ1) and l2 = l(ψ2) respectively. The change h = e−ψ1

3

is an isometry mapping the 1-orbit by l1 onto Cir1, this isometry also maps O1,2 onto
intersection of Cir1 and the image by h of the second 1-orbit. By the Sub-lemma, this
intersection consists only of the matrix D. Hence, intersection of the two considered
1-orbits consists only of the matrix D, and the point D in these 1-orbits corresponds
only to the value φ1 = φ2 = 0. This contradiction to the condition on the angles proves
injectiveness of the map AxR.

It remains to prove surjectiveness of AxR.
By the statement (3) of Lemma 2, Orbit(D) is a smooth, compact, and connected

surface of dimension two. The map AxR(φ, ψ) = l(ψ)φD smoothly maps the torus
onto a compact and connected surface residing in Orbit(D). This map has rank two
everywhere at the torus except the circumference φ = 0 (corresponding the point D of
the orbit). Denote this surface (the image of AxR) ImA.

The intuition behind the proof is as follows. If X and Y are bi-dimensional, smooth,
compact, and connected surfaces, and X is a subset in Y , then these surfaces coincide.
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Because otherwise, there exists some point X in the border of X in Y . There exists
a neighborhood of X in X diffeomorphic to a circle in R

2, and this contradicts to the
border position of X .

Now, keeping in mind a particular place of the pointD in the map AxR, let us provide
a formal proof. We need to prove that the set Orbit(D)\ ImA is empty. Proving by
contradiction, suppose that it contains some point M . The orbit without the point D is
a smooth surface. Also it is connected. Because for each pair of different points at this
surface there exists a smooth curve (with a non-zero derivative vector in each point)
connecting these points and residing in the orbit. Some non-empty neighborhood of the
point D on the orbit is diffeomorphic to a circle in R

2. So, if the chosen curve contains
D, it can be modified by a small change so that it would not contain D.

Therefore, there exists a smooth curve γ(t), mapping the segment [0, 1] to the orbit,
avoiding the point D, and such that γ(0) = D2 and γ(1) = M (instead of D2, there
fits any point in ImA different from D).

ImA is a compact set. Hence, there exist real numbers t1 ∈ [0, 1] and
ǫ > 0 such that for each t ≤ t1 γ(t) ∈ ImA and for each t ∈ (t1, t1 + ǫ) γ(t)
does not belong to ImA. As M1 = γ(t1) 6= D, then some non-empty neighborhood of
M1 in ImA is diffeomorphic to a circle in R

2. Also this neighborhood is contained in
Orbit(D). Therefore there exists a non-empty interval around t1 which is mapped by γ
to ImA. This contradiction with the value choice for t1 and ǫ proves that the map AxR
surjective.

Lemma ATor is proved.
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