
Reachability Analysis in Verification via
Supercompilation

Alexei Lisitsa1 and Andrei P. Nemytykh2?

1 Department of Computer Science, The University of Liverpool
alexei@csc.liv.ac.uk

2 Program Systems Institute of Russian Academy of Sciences
nemytykh@math.botik.ru

Abstract. We present an approach to verification of parameterized sys-
tems, which is based on program transformation technique known as
supercompilation. In this approach the statements about safety proper-
ties of a system to be verified are translated into the statements about
properties of the program that simulates and tests the system. The su-
percompilation is used then to establish the required properties of the
program. In this paper we show that reachability analysis performed by
supercompilation can be seen as the proof of a correctness condition by
induction. We formulate suitable induction principles and proof strate-
gies and illustrate their use by examples of verification of parameterized
protocols.

Keywords: Program verification, cache coherence protocols, program
specialization, supercompilation.

1 Introduction

The verification of infinite-state or parameterized problems is, in general, an
undecidable problem. The research in this area is focused on finding restricted
classes of problems, for which verification is decidable and the development of
efficient verification procedures for practical applications. The research is active
and taking different routes [10, 8, 3, 2, 1]. But still many practically interesting
verification problems lie outside the scope of existing automated verification
methods and further development of these methods is required.

One of the recent interesting and promising directions for tackling infinite-
state, or parameterized, verification is to apply the methods developed in the area
of program transformation and metaprogramming, and in particular, program
specialization [11, 19, 18].

In this paper we are interested in one particular approach in program trans-
formation and specialization, known as supercompilation3. Supercompilation [35]
? The second author is supported by the Program for Basic Research of the Pre-

sidium of Russian Academy of Sciences (as a part of “Development of the basis
of scientific distributed informational-computing environment on the base of GRID
technologies”), and the Russian Ministry of Sciences and Education (grant 2007-4-
1.4-18-02-064).

3 from supervised compilation

2

has not drawn much attention yet in the context of verification, although it has
been mentioned in [19, 18] as potentially applicable here. The supercompilation
is a powerful semantic based program transformation technique [35, 38, 33] hav-
ing a long history well back to the 1960-70s, when it was proposed by V. Turchin.
The main idea behind a supercompiler is to observe the behavior of a functional
program P running on partially defined input with the aim to define a program,
which would be equivalent to the original one (on the domain of latter), but hav-
ing improved properties. The supercompiler unfolds a potentially infinite tree of
all possible computations of a parameterized program. In the process, it reduces
the redundancy that could be present in the original program. It folds the tree
into a finite graph of states and transitions between possible (paramemetrized)
configurations of the computing system. And, finally, it analyses global properties
of the graph and specializes this graph with respect to these properties (without
an additional unfolding). The resulting definition is constructed solely based on
the meta-interpretation of the source program rather than by a (step-by-step)
transformation of the program.

The result of supercompilation may be a specialized version of the original
program, taking into account the properties of partially known arguments, or
just a re-formulated, and sometimes more efficient, equivalent program (on the
domain of the original) [14].

Turchin’s ideas have been studied by a number of authors for a long time and
have, to some extent, been brought to the algorithmic and implementation stage
[28]. From the very beginning the development of supercompilation has been
conducted mainly in the context of the Refal programming language [37, 27],
another creation of V.Turchin. A number of the simplest model supercompilers
for subsets of LISP-like languages were implemented as well with an aim to
formalize some aspects of the supercompilation algorithms [32, 34, 33]. The most
advanced supercompiler for Refal is SCP4 [28, 26, 25, 27].

In [21–24] we proposed to use supercompilation for verification of parame-
terized systems using a particular scheme of parameterized testing. Using this
scheme we translate the statements about safety properties of a system to be
verified into the statements about properties of the program that simulates and
tests the system. The supercompilation is used then to establish the required
properties of the program. We have conducted series of experiments on verifica-
tion of parameterized cache coherence protocols and successfully verified [22] all
cache coherence protocols presented in [5] and [7]. We have also verified in this
way parameterized Java MetaLock algorithm and series of Petri Nets models.
This work started mainly as an experiment driven one and the approach proved
to be empirically successful. This left however the questions on its correctness
and completeness for classes of verification problems open. In this paper we ad-
dress the issue of correctness of proposed method. We develop a formal model,
which renders supercompilation process in the particular context of parame-
terized testing as a reachability analysis for term-rewriting systems by means
of inductive proofs of safety properties. This establises the correctness of the
method.

3

Further we illustrate our method by verification of parameterized MOESI
protocol [5]. Interestingly enough, using supercompilation to perform parame-
terized testing allows not only to verify the protocol but also to discover new
facts about the protocol. The facts are formulated by automatic generalization
of configurations - one of the tools of supercompilation. In particular, an anal-
ysis of the supercompilation trace shows that the protocol is correct with more
general assumptions on the initial state than reported in [5].

The paper is organized as follows. In the next section we give general de-
scription of our verification via parameterized testing approach in language-
independent terms. Section 3 presents the formal model and correctness result.
Then in section 4 we introduce some of the strategies leading to successful ver-
ification of a class of parameterized cache coherence protocols. In section 5 we
present a free monoid of terms and specify the strategies of the supercompiler
SCP4 in its terms. Detailed verification of the MOESI protocol using these strate-
gies is presented in the Appendix.

2 Parameterized Testing

In this section we describe our general technique for the verification of param-
eterized systems. The technique is based on the translation of the statements
about safety properties of a system to be verified into the statements about
properties of the program that simulates and tests the system.

The scheme works as follows. Let S be a parameterized system (a protocol)
and we would like to establish some safety property P of S. We write a program
ϕS simulating execution of S for n steps, where n is an input parameter. Let the
n be given in the unary system, as a string of characters. If the system is non-
deterministic, we label each step with an action, whose value is assumed to be
chosen at the branching point of execution, e.g. it may be a character labelling
the choice. Thus, we assume that given the values of input parameter n, the
program ϕS returns the state of the system S after the execution of n steps of
the system, following the choices provided by the labels of the steps. Let TP ()
be a testing program, which given a state s of S returns the result of testing the
property P on s (True or False). Consider a composition TP ◦ϕS . This program
first simulates the execution of the system and then tests the property required.
Let the both programs terminate. Now the statement ”the safety property P
holds in any possible state reachable by the execution of the system S from an
initial state” is equivalent to the statement ”the program TP (ϕ(n)) never returns
the value False, no matter what values are given to the input parameter”.

In practical implementation of the scheme we use functional programming
language Refal to implement a program TP (ϕS(n)) and optimizer SCP4 (a su-
percompiler) to transform the program to a form, from which one can easily
establish the required property.

The idea of using testing and supercompilation for the verification purposes is
not new. In the classical paper [35] V.Turchin writes: Proving the correctness of
a program is theorem proving, so a supercompiler can be relevant. For example,

4

if we want to check that the output of a function F (x) always has the property
P (x), we can try to transform the function P (F (x)) into an identical T . The
idea has not been tried until recently for the problems interesting for verification
community. Our experiments have shown that indeed, the idea is viable and can
be adopted for non-trivial verifications problems for parameterized distributed
systems.

3 Correctness Issue and Formal Model

One of the immediate questions posed by almost everyone seeing the approach
in work for the first time is “Is this correct at all? Why should I believe your
claims about verification?”

Firstly, one can argue as follows. It has been shown, in particular in [32, 34,
31] that (variants of) supercompilation is a correct transformation, in a sense
it always returns (if any) the program equivalent to the input program (on the
domain of latter). Then we repeat the argument from Section 2. We should
note, in this respect, that SCP4 [26, 25, 28] is a large program dealing with the
concrete functional language Refal, which has specific semantic assumptions, like
built-in associativity of concatenation as a term forming construct. Furthermore,
SCP4 supercompiler, is a result for the more than two decades development and
it is highly optimized program, implementing different strategies which can be
tailored by the user to the particular cases. Proving the correctness of the whole
SCP4 is far from being trivial and is, actually, irrelevant to our experiments. Even
if we accept the correctness, it does not explain why supercompilation works
for establishing correctness properties. We address these issues in the present
paper by developing a formal model, which renders supercompilation process (in
the case of verification tasks) as an inductive proof of safety properties. That
establishes the correctness of the method. The formal model is a very simplified
and refined theoretical version of SCP4, which, nevertheless, is sufficient for
verification of a class of (parameterized) cache coherence protocols.

In this paper we confine ourselves by the claim that supercompiler SCP4
indeed implements the formal model we present. We provide some relevant com-
ments but detailed discussion of the claim lies outside the scope of this paper.
The model formulated in terms of term rewriting systems.

3.1 Term Rewriting Systems and Safety Properties

Let V be a denumerable set of symbols for variables and F = ∪iFi be a finite set
of functional symbols, here Fi is a set of functional symbols of arity i. Let T (V,F)
be a free algebra of all terms build with variables from V and functional symbols
from F in a usual way. Let every Fi be divided into disjoint sets Fi = Fni ∪ Ci.
We refer to Fni as function names and to Ci as constructor names. Let C = ∪iCi.
A term without function names is passive. Let G(T) ⊂ T (V,F) be the set of
ground terms, i.e. terms without variables. Let O(T) ⊂ G(T) be the set of object

5

terms, i.e. ground passive terms. For a term t we denote the set of all variables
in t by V (t).

A substitution is a mapping θ : V → T (V,F). A substitution can be extended
to act on all terms homomorphically. A substitution is called ground, object, or
strict iff its range is a subset of G(T), O(T) or T (V, C) (i.e. passive terms),
respectively. We use notation s = tθ for s = θ(t), call s be an instance of t and
denote this fact by s � t.

A term-rewriting system is a pair P = 〈t, R〉, where t is a term called initial
and R is a finite set of rules of the form f(p1, . . . , pk) → r, where f ∈ Fnk,
∀i (pi ∈ T (V, C))4, r ∈ T (V,F), V (r) ⊆ V (f(p1, . . . , pk)).

Given a set of rules R define one-step transition relation ⇒R⊆ T (V,F) ×
T (V,F) as follows: t1 ⇒R t2 holds iff there exist a strict substitution θ and a
rule (l → r) ∈ R such that t1 = lθ and t2 = rθ. Reachability relation ⇒∗

R is
a transitive and reflexive closure of ⇒R. Notice, that any term reachable for a
ground term is also ground.

Definition 1. A binary relation ⇒ on a set T is terminating (or well-founded)
if there exists no infinite chain t1 ⇒ t2 ⇒ t3 ⇒ . . . of elements of T .

Henceforth we assume that transitive closure ⇒+
R of the restriction of ⇒R

on G(T)× G(T) is terminating.
An arbitrary subset Q of O(T) is called a property. Let q be a finite set

(collection) of passive terms. A property Qq defined by q is a set of all object
instances of all terms from q, that is Qq = {τ | τ ∈ O(T) ∧ ∃ρ ∈ q (τ � ρ)}

We consider the following reachability problem on for term-rewriting systems.

Verification of safety property
Given: A term-rewriting system P = 〈t, R〉 and property Qq.
Question: Is it true that all passive terms reachable in P from any ground
instance of t do not satisfy the property Qq? In formal notation, is the statement

∀s ∈ O(T)(∀t′ ∈ O(T)((t′ � t) ∧ (t′ ⇒∗
R s)) → s /∈ Qq)

true?
Many interesting verification problems for parameterized systems may be re-
duced to the above problem. See the section 7 for an example. In the next sub-
section we present a method suitable for solving such a problem and demonstrate
its correctness.

3.2 Inductive Proofs of Safety Properties

Consider an instance of the above verification problem I = (〈t, R〉, Qq).
The proof of the safety property for I can be established by constructing

successful proof attempt which consists of a sequence of trees. Vertices of trees
will be labeled by terms. For a vertex a denote by ta the term labeling a.
4 For simplicity we use only such kind of term-rewriting systems.

6

We assume that we have a testing procedure, which given a vertex a checks
whether all ground instances of the ta do not satisfy the property Qq.

Another assumption is that any vertex in a tree is labelled as unready, open or
closed (one flag per vertex) and all generated vertices are unready until they are
explicitly open. We assume also that when any vertex of the proof tree labeled
by a passive term is generated it is immediately tested. If the testing produces
the negative result the whole proof tree building procedure stops and returns
the answer NO to the verification problem, otherwise the vertex is closed.

Given a directed tree T and its edge (a e→ b), we say the vertex a is the parent
of b and b is a child of a. A vertex a1 is an ancestor of a vertex an if there exists
a sequence of edges of T such that (a1

e→ a2), (a2
e→ a3), . . . , (an−1

e→ an).

Definition 2. For a given I = (〈t, R〉, Qq) a proof attempt is a sequence of
directed trees T0, T1, . . . such that T0 is generated by the START rule, and Ti+1 is
obtained from Ti by application of one of the following rules: UNFOLD, CLOSE,
GENERALIZE.

The proof rules are defined as follows

START Create a root of the tree, label it by the initial term t of the term
rewriting system.

UNFOLD Choose any of the unready vertices a with the labeling term ta and
generate all terms t1, . . . tn such ta ⇒R ti. For every such ti create a child
vertex ai for a and put tai = ti. Open the vertex a. If the parent of a is
open, then close the parent.

CLOSE I Choose any of the open vertices a and check whether there is a closed
vertex b, such that ta � tb. If yes close the vertex a and delete its children.
If there are no such a b do nothing.

CLOSE II Choose any of the open vertices a and check whether all its children
are closed there. If yes close the vertex a.

GENERALIZE Choose any of the open vertices a and any vertex b, ancestor
of the a in the tree. Generate a term τ such that both tb � τ and ta � τ
hold. Delete the subtree with the root b, except the vertex b itself. Replace
the label tb with τ . Mark the vertex b as unready.

Significance of the unready flag is related to effectiveness issue and will be
considered in the section 4.

Definition 3. A proof of an I is a finite proof attempt T0, . . . , Tn for I such
that all vertices in Tn are closed.

Let R be a term rewriting system, t ∈ T (V,F) and t0 be a ground instance
of the term t. Let t̄0 = t0 ⇒R t1 ⇒R t2 . . . ⇒R tl be an arbitrary sequence of
terms derived from t0 by application of rules from R. Denote by R(t) the set of
all passive terms reachable in R from any ground instance of t and CR(t) the set
of all the sequences ḡ0 such that g0 is a ground instance of t and g|ḡ0|−1 ∈ R(t).
The following proposition is trivial.

7

Proposition 1. Let t be a term and τ be a term such that t � τ , then CR(t) ⊂
CR(τ) holds. (And hence R(t) ⊂ R(τ).)

Theorem 1. For an instance I = (〈t, R〉, Qq) of the verification problem above
if there is a proof for I then the answer for this I is YES.

Proof Let T0, . . . , TN be a proof for I.
The statement of the theorem follows from the following statement. Let t0 be

a ground instance of the initial term t. Let t̄ = t0 ⇒R t1 ⇒R t2 . . . ⇒R tl−1 be
an arbitrary sequence of terms derived from t0 by application of rules from R.
Then every ti is an instance of a term tai

for some vertex ai of T . The proof of
the statement is by induction on the length of the sequence. Let |t̄| = 1, that is
t̄ = t0 By construction of the proof attempt T0, . . . , TN the label τ of the initial
vertex of TN is (possibly generalized several times) term t, i.e. we have t � τ
and therefore t0 � τ . Notice that once a term labelling some vertex is generated
it may be generalized several times later in the proof attempt by application of
GENERALIZE rule.

Consider now the step of induction. Assume the statement for all sequences
of the length up to some l and let t̄ = t0 ⇒R t1 ⇒R t2 . . . ⇒R tl. By induction
hypothesis we have tl−1 � ta for some vertex a ∈ TN . Then two cases are
possible.

If there are some children a1, . . . , ak of a in TN then there exists some child
aj of a such that taj is (possibly generalization of) the term tl (by the semantics
of UNFOLD rule). It follows then tl � taj

.
If there are no children of a in TN then ta should be active, otherwise there

could not be any term tl such that tl−1 � ta and tl−1 ⇒R tl. Moreover in that
case the vertex a is closed by the application CLOSE I rule and there should be
another vertex b ∈ TN such that ta � tb. If b has some children we repeat the
argument for the previous case taking vertex b instead of a. If it does not we
find yet another vertex c such that ta � tb � tc and repeat the argument for c.
Notice that there is no more than finitely many vertices in TN , so after finitely
many steps this case is reduced to the previous one. Step of induction is proved.

It follows that any ground passive term derivable from t0 is an instance of
one of the passive terms in TN . Since all reachable passive vertices in TN are
tested the statement of the theorem follows. �

Example 1. Let f ∈ Fn2, A,B ∈ C1, x, y, xi, yi ∈ V. Consider I = (〈t, R〉, Qq).
Here R is:

f(B(x), y) = f(x,B(y));
f(A(A(x)), y) = f(A(x), B(y));
f(A(B(x)), y) = y;

q contains the only term A(x) and t = f(B(x1), y1).
Let [τ] be a vertex labelled with a term τ . We denote each closed vertex as

[τ]c, each open vertex as [τ]o and each unready vertex as [τ]u. The first proof at-
tempt is successful: START rule gives the tree T0 containing the only vertex au =

8

[f(B(x1), y1)]u, UNFOLD rule yields T1 = {ao, bu = [f(x2, B(y1))]u, (ao e→ bu)};
after the second UNFOLD we have T2 = {ac, bo, du

1 = [f(x3, B(B(y1)))]u, du
2 =

[f(A(x4), B(B(y1)))]u, du
3 = [B(y1)]c, (ac e→ bo), (bo e→ du

1), (bo e→ du
2), (bo e→

du
3)}; now two applications of UNFOLD rule open du

1 , du
2 and close bo; two

applications of CLOSE rule close do
1 and do

2 with bc as the witness. We have
T6 = {ac, bc, dc

1, d
c
2, d

c
3, (a

c e→ bc), (bc e→ dc
1), (b

c e→ dc
2), (b

c e→ dc
3)}, where all

vertices are closed.
The second proof attempt fails: T0, T1, T2 are the same as in the first attempt;

GENERALIZE gives T3 = {gu = [f(x3, y3)]u}. Now it is easy to see this attempt
does not terminate.

The third proof attempt fails: T0, T1, T2 are the same as in the first attempt;
GENERALIZE gives T3 = {gu = [x3]u}. Now gu can never be closed.

We show now that, in fact, the proof sequence is a compact representation
of the inductive proof of the correctness condition (none of the ground instances
of the reachable passive terms has the property Qq). First, we formulate the
induction scheme in general terms.

Let . be a well-founded partial ordering on a set K. Let M is the set of all
minimal elements of K: M = {t ∈ K | ¬∃(τ ∈ K).(τ 6= t)∧ (t . τ)}. Note that M
is not empty. Let Q be a predicate on K and S be a subset of K. The following
induction scheme can be used then to prove that Q holds everywhere on K (we
assume y / x ≡ x . y here):

(∀t ∈M.Q(t)) ∧ (∀x ∈ K.(∀y ∈ S.y / x → Q(y)) → Q(x))
∀x ∈ K.Q(x)

Retuning to our context, let L is the set of the terms generated by applications
of GENERALIZE rule during the proof given above and t is the initial term of
the I. Let Hg be the following hypothesis: “none of the ground instances of g ∈ L
reaches a passive term having the property Qq”.

Then the proof given by the successful proof attempt can be considered as
simultaneous proofs of all hypotheses Hg, such that each of them follows the
inductive scheme given above and moreover the proofs may refer one to another.
Here K = O(T), . is ⇒+

R, Q(t) = Ht, Mg is the set of all passive object terms
reachable from all ground instances of g, and Sg is the set of the ground instances
of the terms closed during applications of CLOSE rule. The subscript g indicates
the concrete proof of Hg.

4 Towards Effectiveness

The proof procedure presented in the previous section is non-determinstic. That
leads to necessity of development of deterministic proof strategies which would
be complete and/or efficient for classes of verification problems. In this section
we make first steps towards resolving these largely open issues, and present
the strategies which empirically has turned out to be sufficient for (practically
efficient) proofs of correctness of cache coherence protocols [5].

9

The second proof attempt given in the Example 1 demonstrates that critical
information may be lost during an application of GENERALIZE rule. The infor-
mation guaranteed transformation of the initial term uniformly on the values of
the parameters. The start vertex is not a branching point: there exists the only
edge outgoing from the vertex. Terminating of ⇒+

R (see the section 3.1) means
there cannot be an infinite sequence of such kind of vertices one after another.
Thus it is desirable to exclude such vertices from generalization.

Definition 4. An open or closed vertex b is pivot in a tree Tj iff b has at least
two outgoing edges.

A closed vertex can be both basic and pivot. Henceforth we impose the
following retsriction on the strategy of rule applications: both CLOSE and GEN-
ERALIZE rules choose only pivot vertices.

Given two terms t1 and t2 there can be a number of different generalizations,
see example 1 for the illustration. Aiming to preserve as much as possible the
structure of the terms, we impose the next restriction on GENERALIZATION
rule: result of generalization of any two terms t1 and t2 should be most specific
term τ , meaning both t1 � τ and t2 � τ hold and for any other term ξ such
that (t1 � ξ)∧(t2 � ξ � τ) implies that ξ equals to τ modulo variable’s names.

Further restriction is concerned with the choice of terms to be generalized.
In order to preserve the structure of terms it is natural and desirable to gener-
alize only terms, which are similar (in a sense) one to another. There is delicate
trade-off here. Informally, the fewer applications of GENERALIZE rule hap-
pened during a proof attempt the less information on the terms structure is
lost and more chances to close the passive vertices. On the other hand, to close
active vertices one may need more applications of GENERALIZE rule. The fol-
lowing criteria based on well-quasi-ordering have turned out to be empirically
successful.

A quasi-ordering is any reflexive and transitive binary relation.

Definition 5. A quasi-ordering � on a set T is a well-quasi-ordering if every
infinite sequence t1, t2, . . . of elements of T contains ti, tj (i < j) such that
ti � tj.

Given a well-quasi-ordering � on T (V,F), we specify the strategy choosing
the vertices by GENERALIZE rule as follows: choose any of the pivot open
vertices a and any pivot vertex b, ancestor of the a in the tree such that tb � ta;
if there exists no such a b do nothing.

Further, there can be a number of such vertices b. Intuitively, the closer a
vertex b to the vertex a (among the all its ancestors) the closer any ground
instance of the b to a passive ground term terminating evaluation of the instance
by the term-rewriting system. So we add to the above generalization strategy
the requirement to choose the closest such a vertex b.

All our experiments verifying the class parameterized protocols [5] were suc-
cessful both under lazy (call by need) and under applicative (call by value) strate-
gies developing the stack of functions. For simplicity we selected the applicative

10

strategy to demonstrate the main example given in the section 7. We encode this
semantic concept in syntax as follows. Given a composition t = f(. . . , g(. . .), . . .),
where f, g ∈ Fn, we transform the term to

Let(x, eq, g(. . .), in, f(. . . , x, . . .)),

Let ∈ Fn is a auxiliary name. The term g(. . .) is transformed recursively in the
same fashion. We note the semantics of both the t and the transformed term
is the same. We stress that without such representation of the composition the
other strategies do not lead to successful experiments with the cache coherence
protocols.

5 A Free Monoid of Terms

In this section we consider a free monoid of terms, which was actually used in our
experiments. Using this data structure and concepts and strategies given above
allows to obtain automatic proofs of correctness of cache coherence protocols
from [5]. See also remarks in Section 6.

We construct the monoid from T (V,F) by minor modification of definition.
Let all the function names be unary Fn1, while the constructor set be C =
C2∪C1∪C0. Let us denote terms constructed with a f ∈ Fn1 as <f t>, where t is a
term. Let C2 contains the only associative element named as concatenation, used
in infix notation and denoted with the blank. The associativity allows to drop
the parentheses of the constructor at all. Let C1 contains the only constructor,
which denoted only with its parentheses (that is without a name). C0 = K∪{λ}.
We denote the constants from K with its names: that is without the parentheses.
The constant λ is denoted with nothing: it is the unit of the concatenation. Let
the variable set V be disjoined in two sets V = E ∪ S, where the names from
E are prefixed with ’e.’, while the names from S – with ’s.’. For a term t we
denote the set all e-variables (s-variables) in t by E(t) (correspondingly S(t)).
V(t) = E(t) ∪ S(t). The monoid of the terms may be defined with the following
grammar:

t ::= λ | c | v | <f t> | t1 t2 | (t)
λ ::=

where c ∈ K, v ∈ V, f ∈ Fn1. Thus a term is a finite sequence (including
the empty sequence). We denote the constructed free monoid as A(V,F). Any
substitution has to map every v ∈ S into K ∪ S.

5.1 Restrictions on Term-rewriting Systems

Given a term-rewriting system 〈t, R〉 on the set A(V,F). Associativity of the
concatenation simplifies the syntax structure of the terms, but it creates a prob-
lem with the one-step transition relation ⇒R⊆ A(V,F)×A(V,F), namely, given
a term τ and a rule (l → r) ∈ R, then there can be several substitutions match-
ing τ with the l. Thus we have a new kind of non-determinism here. An example
is as follows:

11

Example 2. τ = <f A> and l = <f e.x e.y>, where A ∈ K, e.x, e.y ∈ E ⊂
V. There exist two substitutions matching the terms: the first is θ1(e.x) =
λ, θ1(e.y) = A, the second is θ2(e.x) = A, θ1(e.y) = λ.

Multiplicity of v ∈ V in a term t is the number of occurrences of v in t. A
variable x ∈ E(t) is closed in a term t iff (1) t = (t1) and x is closed in t1; (2)
t = t1 . . . tn, where there exists at most one ti = x and ∀j the x is closed in tj .

We impose the following restriction on the left sides of the rules from R.
The multiplicity of any v ∈ E(l) equals 1 and v is closed in l. These restrictions
exclude recursive equations that have to be solved when we are looking for the
substitutions matching a given parameterized term with a left side of a rule.
The following term τ = <f (A e.p) (e.p A)> and l = <f (e.x) (e.x)> is an
example showing that the recursive equation A e.p = e.p A arises on e.p; the
reason of the recursion is the fact that the multiplicity of e.x ∈ E(l) is 2.5 The
second example τ = <f e.p> and l = <f e.x A e.y> as well as the example 2
demonstrate the problems, which are caused by unclosed variables (here both
e.x and e.y) in the left hand-sides of the rules.

Consider the example 2. Let us think of the τ as a left part of a rule ρ,
while of the l as a term to be match with τ with the goal to unfold. The both
substitutions given in the example 2 match the term l with τ . Hence, during the
application of UNFOLD rule we have to take into account the both substitutions
and generate two children of l from ρ. We solve this problem with the following
additional sub-rule:

SPLIT Given a term t to be unfolded (with a rule ρ = (l → r)) such that
E(t) includes unclosed variables. Take a subterm of t of the form ξ =
t1 . . . e.x . . . e.y . . . tn (i.e. the both variables e.x, e.y ∈ E(t) are not en-
closed with the parenthesis) such that there exist at least two substitutions
which match ξ with the corresponding subterm of l. Generate the following
three substitutions θ1(e.x) = s.n e.x1, θ2(e.x) = (e.z) e.x2, θ3(e.x) = λ.
Here e.x1, e.x2, e.z are fresh variables from E , s.n is a fresh variable from S.
Unfold tθi with the rule ρ.

The SPLIT rule is recursive and terminates. See the section 7 for the examples
using this rule.

The example 2 shows also another problem. The term l may be considered
as a generalization of the term τ : τ � l. The problems is: there exists a term
ξ = e.z such that l 6= ξ, τ � ξ and both l � ξ and ξ � l hold. Now we specify
generalization. Given two terms t1, t2 ∈ A(V,F) and the set G of all the most
specific terms generalizing both t1 and t2 (see the section 4). Let νx(t) be the
multiplicity of an x ∈ E(t). We use (as the result of generalization of t1, t2) g ∈ G

such that
∑

x∈E(g)

νx(g) is minimal over G.

5 The solution of the equation is e.p = A∗.

12

5.2 The Well-quasi-ordering on A(V, F)

Given t1, t2 ∈ A(V,F), there exist two elementary functions constructing a new
term from the given term. The functions are F1(t1, t2) = t1 t2 and F2(t1) = (t1).
There exists also a family of functions Ff (t1) = <f t1>, where f ∈ Fn1. We
consider a quasi-ordering such that: (1) with respect to it all these functions are
monotone non-decreasing t1 ∝ F1(t1, t2), t1 ∝ F2(t1), t1 ∝ Ff (t1); (2) these func-
tions are matched with the quasi-ordering: t1 ∝ t2 implies F2(t1) ∝ F2(t2), Ff (t1)
∝ Ff (t2) and for any term t both F1(t, t1) ∝ F1(t, t2) and F1(t1, t) ∝ F1(t2, t)
hold. The following relation is a variant of the Higman-Kruskal relation and is
a well-quasi-ordering [12, 15].

Definition 6. The homeomorphic embedding relation ∝ is the smallest transi-
tive relation on A(V,F) satisfying the following properties, where h ∈ Fn1, s, t, ti
∈ A(V,F).

1. ∀x, y ∈ E . x ∝ y,∀u, v ∈ S. u ∝ v;
2. t ∝ <h t>, t ∝ (t), t ∝ s t, t ∝ t s;
3. s ∝ t, then <h s> ∝ <h t>, (s) ∝ (t), s t1∝ t t1, t1 s ∝ t1 t.

Corollary 1. 1. λ ∝ t ∝ t, where λ is the empty sequence;
2. ∃i1, . . . , ij such that 1 ≤ i1 < i2 < . . . < ij ≤ n, then ti1 . . . tij

∝ t1 . . . tn.

Given an infinite sequence of terms t1, . . . , tn, . . ., this relation is relevant to
approximation of increasing loops in the sequence; or in other words to looking
for the regular similar cases of mathematical induction on the structure of the
terms. That is to say the cases, which allow refer one to another by a step of the
induction. An additional restriction separates the basic cases of the induction
from the regular ones. The restriction is:

∀c ∈ K.() ∝/ (c) ∧ ∀v ∈ S.() ∝/ (v).

We impose this restriction on the relation ∝ and denote the obtained
relation as �. It is easy to see that such a restriction does not violate the quasi-
ordering property. Note that the restriction may be varied in the obvious way, but
for our experiments its simplest case given above is used to control applications
of GENERALIZE rule and has turned out to be sufficient.

6 Discussion

In addition to the MOESI protocol described in the Appendix the supercompiler
SCP4 verified by our scheme the following parameterized cache coherence pro-
tocols: IEEE Futerbus+, MESI, MSI, “The University of Illions”, DEC Firefly,
“Berkeley”, Xerox PARC Dragon [5, 6]. All these protocols are specified anal-
ogously to the description given in the section 7. In the case of the MOESI
protocol the time of automatic verification is 1 second (Windows XP/Service

13

Pack 2, Intel Pentium III, 450 MHz, 256 MB of RAM); verification of the other
protocols takes times, which slightly differ from the indicated.

One of the questions left open is why do we work in terms of the free monoid
A(V,F) and how important is such a choice? Actually, supercompiler SCP4
is able to prove correctness of the main example considered in the section 7
encoded in terms of a free algebra terms too, but the proof is much more bulky
as compared with the proof presented in section 7.3. Moreover, the proof in
this case requires additional capabilities of the supercompiler which are not
presented in our formal model. We leave detailed analsys and comparisons of
different encodings to future work.

The work reported in this paper has started as mainly driven by experiments.
There is still much work to be done, both theoretically and experimentally. On
the theory side we would like to have the completeness results for classes of ver-
ification problems and particular strategies. The applicability of the strategies
already implemented in SCP4 is also worth to explore further. Recent experi-
ments have shown that SCP4 strategies are quite robust with respect to order
in wich rewriting rules are encoded in Refal programs. For example, the above
MOESI protocol can be verifed with any of 120 (=5!) permutations of rewriting
rules for RandomAction. See [24] for details to this subject.

Finally, comparisons with related work, especially with [11, 19, 20] and [30]
should be done. In both these approaches transformations of logic (as opposed
to our functional) programs are used to perform verification of parameterized
systems. Despite the differences in programing languages, systems encodings and
verifications schemes used, all three approaches have a common ground and rely
on variants of unfold/fold transformations.

References

1. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A Survey of Regular Model
Checking. In Proc. 15th Int. Conf. on Concurrency Theory, LNCS, 2004.

2. Baukus, K., Stahl, K., Bensalem, S., Lakhnech, Y.: Networks of Processes with
Parameterized State Space. In Electronic Notes in Theoretical Computer Science,
January 2004, vol. 50, no.4, pp 1–15.

3. Bjorner, N., Browne, A., Chang, E., Colon, M., Kapur, A., Manna, Z., Sipma,
H.B., Uribe T.E.: STeP: Deductive-Algorithmic Verification of Reactive and Real-
time Systems. In Proc. International Conference on Computer Aided Verification,
CAV’96, vol. 1102 of LNCS, Springer-Verlag, pp.415-418, 1996

4. Clarke, E.M., Grumberg, Peled, D.: Model Checking. MIT Press, 1999

5. Delzanno, G.: Automatic Verification of Parameterized Cache Coherence Protocols.
In Proc. of the 12th Int. Conf. on Computer Aided Verification, LNCS, vol. 1855,
pp. 53-68 (2000)

6. Delzanno, G.: Automatic Verification of Cache Coherence Protocols via Infinite-
state Constraint-based Model Checking,
http://www.disi.unige.it/person/DelzannoG/protocol.html.

7. Delzanno, G.: Verification of Consistency Protocols via Infinite-state Symbolic
Model Checking, A Case Study. In Proc. of FORTE/PSTV, 2000, pp: 171-188.

14

8. Delzanno, G.: Contsraint-based Verification of Paremeterized Cache Coherence
Protocols. Formal Methods in System Design 23(3):257-301, 2003.

9. Ershov, A.P.: Mixed computation in the class of recursive program schema. Acta
Cybernetica, 4(1), 1978.

10. Esparza, J.: Decidability of model checking of infinite state concurrent systems.
Acta Informatica, 34:85-107, 1997.

11. Glück, R., Leuschel, M.: Abstraction-based partial deduction for solving inverse
problems – a transformational approach to software verification. In Proc. of Sys-
tems Informatics, LNCS 1755, pages 93-100, Novosibirsk, Russia, 1999. Springer-
Verlag.

12. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
2(7) (1952) 326–336

13. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. (1993) Prentice Hall International

14. Korlyukov, A.V., Nemytykh, A.P.: Supercompilation of Double Interpretation.
(How One Hour of the Machine’s Time Can Be Turned to One Second), 2002.
http://www.refal.net/~korlukov/scp2int/Karliukou Nemytykh.pdf.
Sources, demonstration: www.refal.net/~korlukov/demo scp4xslt.zip.

15. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture.
Trans. Amer. Math. Society, 95 (1960) 210–225

16. Leuschel, M., Martens, B.: Global Control for Partial Deduction through Charac-
teristic Atoms and Global Trees. Proceeding of the PEPM’96, LNCS 1110, Springer-
Verlag, 1996.

17. Leuschel, M.: On the Power of Homeomorphic Embedding for Online Termination.
In Proc. of the SAS’98, LNCS 1503, 1998.

18. Leuschel, M., Lehmann, H.: Program Specialization, Inductive Theorem Proving
and Infinite State Model Checking, Invited talk,LOPSTR’03, Uppsala, 2003, ava-
ialable at:www.ecs.soton.ac.uk/~mal/presentations/ITP Lopstr03.ppt.

19. Leuschel, M., Lehmann, H.: Solving coverability problems of Petri nets by partial
deduction. In Proc. 2nd Int. ACM SIGPLAN Conf. on Principles and Practice of
Declarative Programming (PPDP’2000), Montreal, Canada, pp: 268-279, 2000.

20. Leuschel, M., Massart, T.: Infinite state model checking by abstract interpretation
and program specialisation. In A. Bossi, editor, Logic-Based Program Synthesis
and Transformation. In Proc. of LOPSTR’99, LNCS 1817, pages 63-82, Venice,
Italy, 2000.

21. Lisitsa, A.P., Nemytykh, A.P.: Towards Verification via Supercompilation. In Proc.
of COMPSAC 05, the 29th Annual International Computer Software and Applica-
tions Conference, Workshop Papers and Fast Abstracts, pages 9-10, IEEE, 2005.

22. Lisitsa, A.P., Nemytykh, A.P.: Verification via Supercompilation.
http://www.csc.liv.ac.uk/~alexei/VeriSuper/

23. Lisitsa, A.P., Nemytykh, A.P.: Verification as a Parameterized Testing (Experi-
ments with the SCP4 Supercompiler). Programmirovanie. No.1 (2007) (In Rus-
sian). English translation in J. Programming and Computer Software, Vol. 33,
No.1 (2007) 14–23, Pleiades Publishing, Ltd.

24. Lisitsa, A.P., Nemytykh, A.P.: A Note on Specialization of Interpreters. Accepted
by the 2nd International Computer Science Symposium in Russia - CSR07.

25. Nemytykh, A.P.: A Note on Elimination of Simplest Recursions.. In Proc. of the
ACM SIGPLAN Asian Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, (2002) 138–146, ACM Press

15

26. Nemytykh, A.P.: The Supercompiler SCP4: General Structure (extended abstract).
In Proc. of the Perspectives of System Informatics, LNCS, 2890 (2003) 162–170,
Springer-Verlag

27. Nemytykh, A.P.: Playing on REFAL. In: Proc. of the International Workshop on
Program Understanding. A.P. Ershov Institute of Informatics Systems, Syberian
Branch of Russian Academy of Sciences, pp:29-39, July 2003.
(ftp://www.botik.ru/pub/local/scp/refal5/nemytykh_PU03.ps.gz)

28. Nemytykh, A.P., Turchin, V.F.: The Supercompiler SCP4: sources, on-line demon-
stration, http://www.botik.ru/pub/local/scp/refal5/, (2000).

29. Romanenko, S.A.: Arity raiser and its use in program specialization. Proceeding of
the ESOP’90, LNCS, 432:341–360, 1990.

30. Roychoudhury A., Ramakrishnan C.R.: Unfold/fold Transformations for Auto-
mated Verification of Parameterized Concurrent Systems. In Program Development
in Computational Logic, LNCS 3049, 2004, pp 262-291, 2004

31. Sands, D.: Proving the correctness of recursion-based automatic program transfor-
mation. In Theory and Practice of Software Development, volume 915 of LNCS,
pp 681–695, 1995.

32. Sørensen, M.H., Glück, R.: An algorithm of generalization in positive supercompi-
lation. In Logic Programming: Proceedings of the 1995 International Symposium,
pages 486–479. MIT Press, 1995.

33. Sørensen, M.H., Glück, R.: Introduction to Supercompilation. Partial Evaluation
- Practice and Theory, DIKU 1998 International Summer School. June 1998.
http://repository.readscheme.org/ftp/papers/pe98-school/D-364.pdf

34. Sørensen, M.H., Glück, R., Jones, N.D.: A positive supercompiler. In Journal of
Functional Programming, 6(6) (1996) 811–838

35. Turchin, V.F.: The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems, 8:292–325, 1986.

36. Turchin, V.F.: The algorithm of generalization in the supercompiler. In Proceedings
of the IFIP TC2 Workshop, Partial Evaluation and Mixed Computation, pages
531–549. Amsterdam: North-Holland Publishing Co., 1988.

37. Turchin, V.F.: Refal-5, Programming Guide and Reference Manual. Holyoke, Mas-
sachusetts. (1989) New England Publishing Co.
(electronic version: http://www.botik.ru/pub/local/scp/refal5/ ,2000)

38. Turchin, V.F.: Metacomputation: Metasystem transition plus supercompilation.
Proceeding of the PEPM’96, LNCS, Springer-Verlag, 1110:481–509, 1996.

39. Turchin, V.F., Turchin, D.V., Konyshev, A.P., Nemytykh, A.P.: Refal-5: sources,
executable modules. http://www.botik.ru/pub/local/scp/refal5/, (2000)

40. Wadler, P.: Deforestation: Transforming programs to eliminate tree. Theoretical
Computer Science, 73:231–238, 1990.

7 Appendix. Example: MOESI protocol

In this section we apply the parameterized testing (described in Section 2) to
the MOESI cache coherence protocol considered in [5]. We will work in terms of
A(V,F). G. Delzanno [5] describes evolution of this protocol as follows:

(rh) modified + owned + shared + exclusive ≥ 1 → .

(rm) invalid ≥ 1 →
invalid’ = invalid - 1, exclusive’ = 0, modified’ = 0,

16

shared’ = shared + exclusive + 1, owned’ = owned + modified .

(wh1) modified ≥ 1 → .

(wh2) exclusive ≥ 1 →
exclusive’ = exclusive - 1, modified’ = modified + 1 .

(wh3) shared + owned ≥ 1 → exclusive’ = 1,

shared’ = 0, modified’ = 0, owned’ = 0,

invalid’ = invalid + exclusive + modified + owned + shared - 1.

(wm) invalid ≥ 1 → exclusive’ = 1,

shared’ = 0, modified’ = 0, owned’ = 0,

invalid’ = invalid + exclusive + modified + owned + shared - 1 .

The start configuration of the protocol is parameterized with x ranged over
natural numbers:

invalid = x + 1, modified = shared = exclusive = owned = 0.

Correctness of the protocol is expressed with unreachably of configurations of
the following form:

-- (C1) exclusive + shared + owned ≥ 1, modified ≥ 1;

-- (C2) exclusive ≥ 1, shared + owned ≥ 1;

-- (C3) modified ≥ 2;

-- (C4) exclusive ≥ 2 .

The MOESI protocol is a kind of parameterized protocols. The specification
of the protocol is an abstraction of an automata model of protocols. The variables
count the number of the automatons being in the corresponding states. See [5]
for the details.

7.1 An Interpreter of the MOESI Cache Coherence Protocol

The protocol can be considered as a non-deterministic dynamic system with
discrete time, where the slots of the time are randomly labeled with the names
of the actions developing the system. We model this dynamic system by adding
an additional variable time and use the unary arithmetic: 0 = λ, n + 1 = I n.

Let time, inv, mod, sh, exc, own, rm, wh2, wh3A, wh3B, wm, I ∈ K and
Loop,
RandomAction ∈ Fn1. Recall that e.x, . . . ∈ E and s.tm, . . . ∈ S, where E ∪S =
V (see the section 5). The rules of the MOESI protocol are encoded in term of
A(V,F) as follows:

<RandomAction rm (inv I e.x)(mod e.y)(sh e.z)(exc e.u)(own e.v)>

= (inv e.x)(mod)(sh I e.z e.u)(exc)(own e.y e.v);

<RandomAction wh2 (inv e.x)(mod e.y)(sh e.z)(exc I e.u)(own e.v)>

= (inv e.x)(mod I e.y)(sh e.z)(exc e.u)(own e.v);

<RandomAction wh3A (inv e.x)(mod e.y)(sh I e.z)(exc e.u)(own e.v)>

= (inv e.v e.u e.z e.y e.x)(mod)(sh)(exc I)(own);

<RandomAction wh3B (inv e.x)(mod e.y)(sh e.z)(exc e.u)(own I e.v)>

= (inv e.v e.u e.z e.y e.x)(mod)(sh)(exc I)(own);

<RandomAction wm (inv I e.x)(mod e.y)(sh e.z)(exc e.u)(own e.v)>

= (inv e.v e.u e.z e.y e.x)(mod)(sh)(exc I)(own);

17

Here the first terms in the left sides of the rules correspond to the cases of
the specification of the protocol. The wh3 case is represented with two subcases:
the first one is shared ≥ 1, the second is owned ≥ 1. We omit the trivial cases
rh and wh1. Recall that (sh) = (sh λ).

Evolution of the protocol during a given time is described with the following
two rules:

<Loop (time) (inv e.x)(mod e.y)(sh e.z)(exc e.u)(own e.v)>

= (inv e.x)(mod e.y)(sh e.z)(exc e.u)(own e.v);

<Loop (time s.tm e.t) (inv e.x)(mod e.y)(sh e.z)(exc e.u)(own e.v)>

= <Loop (time e.t) <RandomAction s.tm

(inv e.x)(mod e.y)(sh e.z)(exc e.u)(own e.v)>>;

Developing of the system stops when the time is exhausted and the interpreter
returns the final state of the system. The initial term of the term rewriting system
is:

τ = <Loop (time e.time) (inv I e.x)(mod)(sh)(exc)(own)>

The term parameterized with two parameters e.time and e.x.

7.2 The Property of the MOESI Cache Coherence Protocol

The property of the protocol is defined with the following passive terms (see the
section 3.2):

q1 = (inv e.x)(mod I e.y)(sh I e.z)(exc e.u)(own e.v),

q2 = (inv e.x)(mod I e.y)(sh e.z)(exc I e.u)(own e.v),

q3 = (inv e.x)(mod I e.y)(sh e.z)(exc e.u)(own I e.v),

q4 = (inv e.x)(mod e.y)(sh I e.z)(exc I e.u)(own e.v),

q5 = (inv e.x)(mod e.y)(sh e.z)(exc I e.u)(own I e.v),

q6 = (inv e.x)(mod I I e.y)(sh e.z)(exc e.u)(own e.v),

q7 = (inv e.x)(mod e.y)(sh e.z)(exc e.u)(own I I e.v).

Where the terms q1, q2, q3 correspond to the case (C1), q4, q5 correspond to
(C2), q6 – to (C3) and q7 – to (C4).

7.3 The Inductive Proof

Let q be the set ∪i{qi}. Now we are ready to prove the safety property Qq of the
MOESI protocol with the rules defined in the section 3.2 and using the strategies
described in the sections 4,5.1.

We use the same notations as in the example 1 and shorten the names Loop
and RandomAction to L and R. We mark the vertices of the trees Ti with their
creation times and underline the path starting in the root and ending in the ver-
tex being considered. The main terms taking part in closing and generalization
are given in the table 1. Given a tree Ti+1, sometimes we will omit an upper
part of the tree, which is the same as in Ti.

18

Looking for generalization of the main statement START rule gives
the tree T0 containing the only initial vertex [τ]u. UNFOLD rule yields T1 =

{[τ]o, ac
1 = [(inv I e.x)(mod)(sh)(exc)(own)]c,

au
2 = [<Let e.h eq <R s.m (inv I e.x)(mod)(sh)(exc)(own)>

in <L (time e.t) e.h>>]u,

([τ]o
e→ ac

1), ([τ]o
e→ au

2)}.
The passive term ta1 does not match with qi for any i and, hence, we close a1.
That is a basic case of the induction corresponding time = 0.

According the chosen strategy “call by value”, UNFOLD generates (from
the cases rm, wm) T2 = {[τ]c, ([τ]c

e→ ac
1), ([τ]c

e→ ao
2), (a

o
2

e→ bu
3), (ao

2
e→ bu

4)}. See the
table 1 for the terms tb3 , tb4 .

There exist only two vertices on the path starting in the root and ending in
the vertex ao

2 being considered. τ �/ ta2 holds. We unfold the term tb3 : T3 =

{. . . , ([τ]c
e→ ac

2), (a
c
2

e→ bo
3), (a

c
2

e→ bu
4), cc

5 = [(inv e.x)(mod)(sh I)(exc)(own)]c,

cu
6 = [<Let e.h eq <R s.m (inv e.x)(mod)(sh I)(exc)(own)>

in <L (time e.t) e.h>>]u,

(bo
3

e→ cc
5), (b

o
3

e→ cu
6)}.

The passive term tc5 does not match with qi for any i, that causes we closed a1.
That is the second basic case of the induction corresponding time = 1. Below
we omit the comments on the testing.

τ �/ tb3 and ta2 �/ tb3 forbid to generalize tb3 and cause unfolding of td6 .
We have T4 = {. . . , (ac

2
e→ bc

3), (a
c
2

e→ bu
4), (bc

3
e→ dc

5), (b
c
3

e→ do
6), (c

o
6

e→ du
7), (co

6
e→

du
8), (co

6
e→ du

9)}.
Here the new vertices were generated from the cases rm, wh3A, wm. There exists
the only open vertex co

6 in T4 and each of its ancestor �/ tc6 . That forces us to
unfold td7 and the next tree is: T5 = {. . . , (bc

3
e→ dc

6), (d
c
6

e→ do
7), (d

c
6

e→ du
8),

(dc
6

e→ du
9), ec

10 = [(inv e.x)(mod)(sh I I)(exc)(own)]c,

eu
11 = [<Let e.h eq <R s.m (inv e.x)(mod)(sh I I)(exc)(own)>

in <L (time e.t) e.h>>]u,

(do
7

e→ ec
10), (d

o
7

e→ eu
11)}.

It is easy to see that there exists no another possibility for the open vertex
do
7 but to take the vertex bc

3, an ancestor of this vertex, and tb3 � td7 holds.
GENERALIZE rule constructs the term

gb3 = <L (time e.t)(inv e.x)(mod)(sh I e.z)(exc)(own)>.

The term gb3 generalizes both tb3 and td7 . The next tree to be developed is:
T6 = {[τ]c, ([τ]c

e→ ac
1), ([τ]c

e→ ac
2), (a

c
2

e→ bu
3), (ac

2
e→ bu

4)}.
Note that we have replaced the term labeling the vertex b3, but we saved the

creation time of the vertex. That is a line to stress the application of GENER-
ALIZE rule have created an new generalized induction hypothesis, i.e. a more
strong hypothesis. This hypothesis together with the initial τ may be united in:

<L (time e.t) (inv e.x)(mod)(sh e.z)(exc)(own)>.

Hence, when we will finish the proof this more general statement (with respect
to the safety of the protocol MOESI) will be proved.

19

Looking for the second generalization Now we unfold the generalized term
as follows: T7 = {[τ]c, ([τ]c

e→ ac
1), ([τ]c

e→ ac
2), (a

c
2

e→ bo
3), (a

c
2

e→ bu
4),

cc
12 = [(inv e.x)(mod)(sh I e.z)(exc)(own)]c,

cu
13 = [<Let e.h eq <R s.m (inv e.x)(mod)(sh I e.z)(exc)(own)>

in <L (time e.t) e.h>>]u,

(bo
3

e→ cc
12), b

o
3

e→ cu
13)}.

τ �/ gb3 and ta2 �/ gb3 forbid to generalize gb3 and cause unfolding of tc13 . We
have T8 = {. . . , (ac

2
e→ bc

3), (a
c
2

e→ bu
4), (bc

3
e→ cc

12), (b
c
3

e→ co
13), (c

o
13

e→ du
14),

(co
13

e→ du
15), (c

o
13

e→ du
16)}. Here the new vertices were generated from the cases

rm, wh3A, wm. For any ancestor [η]c of the open vertex co
13 we have η �/ tc13 .

UNFOLD rule yields: T9 = {. . . , (bc
3

e→ cc
13), (c

c
13

e→ do
14), (c

c
13

e→ du
15), (c

c
13

e→ du
16),

ec
17 = [(inv e.x)(mod)(sh I I e.z)(exc)(own)]c,

eu
18=[<Let e.h eq <R s.m (inv e.x)(mod)(sh I I e.z)(exc)(own)>

in <L (time e.t) e.h>>]u,

(do
14

e→ ec
17), (d

o
14

e→ eu
18)}.

Now we close the open vertex do
14 with its ancestor bc

3 and consider its unready
sibling du

15. We unfold td15 : T10 = {. . . , (cc
13

e→ dc
14), (c

c
13

e→ do
15), (c

c
13

e→ du
16),

ec
19 = [(inv e.z e.x)(mod)(sh)(exc I)(own)]c,

eu
20 = [<Let e.h eq <R s.m (inv e.z e.x)(mod)(sh)(exc I)(own)>

in <L (time e.t) e.h>>]u,

(do
15

e→ ec
19), (d

o
15

e→ eu
20)}.

The relation � forbids generalization of the term td15 . We unfold te20 :
T11 = {. . . , (dc

15
e→ ec

19), (d
c
15

e→ eo
20), (e

o
20

e→ fu
211), (e

o
20

e→ fu
212), (e

o
20

e→ fu
22),

(eo
20

e→ fu
231), (e

o
20

e→ fu
232)}. Here the new vertices were generated from the cases

rm, wh2, wm and we have splitted the cases rm, wm accordingly with SPLIT
rule (the section 5.1). The term te20 cannot be generalized. We unfold tf211

:
T12 = {. . . , (bc

3
e→ cc

12), (b
c
3

e→ cc
13), (c

c
13

e→ dc
14), (c

c
13

e→ dc
15), (c

c
13

e→ du
16), (d

c
15

e→ ec
19),

(dc
15

e→ ec
20), (e

c
20

e→ fo
211), (e

c
20

e→ fu
212), (e

c
20

e→ fu
22), (e

c
20

e→ fu
231), (e

c
20

e→ fu
232),

hc
24 = [(inv e.z e.x)(mod)(sh I I)(exc)(own)]c,

hu
25=[<Let e.h eq <R s.m (inv e.z e.x)(mod)(sh I I)(exc)(own)>

in <L (time e.t) e.h>>]u,

(fo
211

e→ hc
24), (f

o
211

e→ hu
25)}.

Now we close the open vertex fo
211

with its ancestor bc
3. The term fu

212
is

unfolded and closed likewise the f211 . We skip this case (T13) and afterwards we
have:
T14 = {. . . , (bc

3
e→ cc

13), (c
c
13

e→ dc
14), (c

c
13

e→ dc
15), (c

c
13

e→ du
16), (d

c
15

e→ ec
19), (d

c
15

e→ ec
20),

(ec
20

e→ fc
211), (e

c
20

e→ fc
212), (e

c
20

e→ fu
22), (e

c
20

e→ fu
231), (e

c
20

e→ fu
232)}.

UNFOLD rule applied to fu
22 yields:

T15 = {. . . , (ec
20

e→ fc
211), (e

c
20

e→ fc
212), (e

c
20

e→ fo
22), (e

c
20

e→ fu
231), (e

c
20

e→ fu
232),

hc
26 = [(inv e.z e.x)(mod I)(sh)(exc)(own)]c,

hu
27 = [<Let e.h eq <R s.m (inv e.z e.x)(mod I)(sh)(exc)(own)>

in <L (time e.t) e.h>>]u,

(fo
22

e→ hc
26), (f

o
22

e→ hu
27)}.

The relation � forbids generalization of the term tf22 . We unfold th27 :
T16 = {. . . , (ec

20
e→ fc

22), (e
c
20

e→ fu
231), (e

c
20

e→ fu
232), (f

c
22

e→ hc
26), (f

c
22

e→ ho
27),

20

(ho
27

e→ iu281), (h
o
27

e→ iu282), (h
o
27

e→ iu291), (h
o
27

e→ iu292)}. Here the new vertices were
generated from the cases rm, wm and we have splitted these cases accordingly
with SPLIT rule. The term th27 cannot be generalized. We unfold ti281 :
T17 = {. . . , (fc

22
e→ hc

27), (h
c
27

e→ io281), (h
c
27

e→ iu282), (h
c
27

e→ iu291), (h
c
27

e→ iu292),

jc
30 = [(inv e.z e.x)(mod)(sh I)(exc)(own I)]c,

ju
31=[<Let e.h eq <R s.m (inv e.z e.x)(mod)(sh I)(exc)(own I)>

in <L (time e.t) e.h>>]u,

(io281

e→ jc
30), (i

o
281

e→ ju
31)} .

The relation � forbids generalization of the term ti281 . We unfold tj31 :
T18={. . .,(hc

27
e→ ic281),(h

c
27

e→ iu282),(h
c
27

e→ iu291), (h
c
27

e→ iu292), (i
c
281

e→ jc
30),

(ic281

e→ jo
31), (j

o
31

e→ ku
321), (j

o
31

e→ ku
322), (j

o
31

e→ ku
33), (j

o
31

e→ ku
34), (j

o
31

e→ ku
351),

(jo
31

e→ ku
352)}. Here the new vertices were generated from the cases rm, wh3A,

wh3B, wm and we splitted the cases rm,wm. The term tj31 cannot be generalized.
We unfold tk321

: T19 = {. . . , (hc
27

e→ ic281),(h
c
27

e→ iu282), (h
c
27

e→ iu291), (h
c
27

e→ iu292),

(ic281

e→ jc
30), (i

c
281

e→ jc
31), (j

c
31

e→ ko
321),(j

c
31

e→ ku
322), (j

c
31

e→ ku
33), (j

c
31

e→ ku
34), (j

c
31

e→ ku
351),

(jc
31

e→ ku
352), l

c
36 = [(inv e.z e.x)(mod)(sh I I)(exc)(own I)]c,

lu37=[<Let e.h eq <R s.m (inv e.z e.x)(mod)(sh I I)(exc)(own I)>

in <L (time e.t) e.h>>]u,

(ko
321

e→ lc36), (k
o
32

e→ lu37)} .
Now there exists the vertex ic281

, an ancestor of this vertex ko
32, and ti281 � tk32

holds. GENERALIZE rule constructs the term

gi281
= <L (time e.t)(inv e.x)(mod)(sh I e.z)(exc)(own I)>.

The term gi281
generalizes both ti281 and tk32 . The next tree to be developed is:

T20 = {. . . , (fc
22

e→ hc
26), (f

c
22

e→ hc
27), (h

c
27

e→ iu281), (h
c
27

e→ iu282), (h
c
27

e→ iu291),

(hc
27

e→ iu292)}.
Note that we have replaced the term labelling the vertex i281 . That is the

second hypothesis generated by generalization. In fact the hypothesis is the last;
henceforth we shall finish the proof without using of the GENERALIZE rule.
The both hypotheses generated by generalization will be proved.

Proof without generalization Now we unfold the generalized term as follows:
T21 = {. . . (fc

22
e→ hc

26), (f
c
22

e→ hc
27), (h

c
27

e→ io281), (h
c
27

e→ iu282), (h
c
27

e→ iu291),

(hc
27

e→ iu292), j
c
38 = [(inv e.x1)(mod)(sh I e.z)(exc)(own I)]c,

ju
39 = [<Let e.h eq <R s.m (inv e.x)(mod)(sh I e.z)(exc)(own I)>

in <L (time e.t) e.h>>]u,

(io281

e→ jc
36), (i

o
281

e→ ju
39)}.

The relation � forbids generalization of the term gi281
. We unfold tj39 : T22 =

{. . . , (hc
27

e→ ic281), (h
c
27

e→ iu282), (h
c
27

e→ iu291), (h
c
27

e→ iu292), (i
c
281

e→ jc
36), (i

c
281

e→ jo
39),

(jo
39

e→ ku
40), (j

o
39

e→ ku
41), (j

o
39

e→ ku
42), (j

o
39

e→ ku
43)}. Here the new vertices were

generated from the cases rm,wh3A,wh3B,wm. The term tj39 cannot be generalized.
We unfold tk40 : T23 = {. . . , (hc

27
e→ ic281), (h

c
27

e→ iu282), (h
c
27

e→ iu291), (h
c
27

e→ iu292),

(ic281

e→ jc
36), (i

c
281

e→ jc
39), (j

c
39

e→ ko
40), (j

c
39

e→ ku
41), (j

c
39

e→ ku
42), (j

c
39

e→ ku
43),

21

lc44 = [(inv e.x)(mod)(sh I I e.z)(exc)(own I)]c,

lu45=[<Let e.h eq <R s.m (inv e.x)(mod)(sh I I e.z)(exc)(own I)>

in <L (time e.t) e.h>>]u,

(ko
40

e→ lc44), (k
o
40

e→ lu45)}.
Here we close the open vertex ko

40 with ic281
and unfold its sibling tk41 :

T24={. . ., (ic281

e→ jc
39), (j

c
39

e→ kc
40), (j

c
39

e→ ko
41), (j

c
39

e→ ku
42), (j

c
39

e→ ku
43),

lc46 = [(inv I e.z e.x)(mod)(sh)(exc I)(own)]c,

lu47 = [<Let e.h eq <R s.m (inv I e.z e.x)(mod)(sh)(exc I)(own)>

in <L (time e.t) e.h>>]u,

(ko
41

e→ lc46), (k
o
41

e→ lu47)}.
Here we close the vertex ko

41 with dc
15 and consider its sibling ku

42. tk41 = tk42

implies the vertex ku
42 can be unfolded and closed likewise ku

41. We omit the
development of ku

42 (T25) and consider its sibling ku
43. tk43 � tk41 implies the

vertex ku
43 can be unfolded and closed likewise ku

41. We omit its development
(T26). The vertex ku

43 is the last from its siblings and we have reached a bottom
of the tree of all possible cases.

Analysis of the remaining variants Accordingly with our depth first strat-
egy (the section 4) we have to consider the remaining variants in the order of
decreasing of their creation times. The current tree looks as follows:
T27 = {. . . , (fc

22
e→ hc

27), (h
c
27

e→ ic281), (h
c
27

e→ iu282), (h
c
27

e→ iu291), (h
c
27

e→ iu292),

(ic281

e→ jc
36), (i

c
281

e→ jc
39), (j

c
39

e→ kc
40), (j

c
39

e→ kc
41), (j

c
39

e→ kc
42), (j

c
39

e→ kc
43)}.

We see the next vertex to be unfolded is the second child of hc
27. We denote

the completely closed part of the tree as Tc and unfold the term ti282 :
T28 = {. . . , (fc

22
e→ hc

27), (h
c
27

e→ ic281), (h
c
27

e→ io282), (h
c
27

e→ iu291), (h
c
27

e→ iu292), Tc,

jc
48 = [(inv e.x)(mod)(sh I)(exc)(own I)]c,

ju
49 = [<Let e.h eq <R s.m (inv e.x)(mod)(sh I)(exc)(own I)>

in <L (time e.t) e.h>>]u,

(io282

e→ jc
48), (i

o
282

e→ ju
49)}.

We close the open vertex io282
with ic281

6 and unfold its sibling ti291 :
T29 = {. . . , (cc

13
e→ dc

15), (c
c
13

e→ du
16), (d

c
15

e→ ec
19), (d

c
15

e→ ec
20), (e

c
20

e→ fc
211),

(ec
20

e→ fc
212), (e

c
20

e→ fc
22), (e

c
20

e→ fu
231), (e

c
20

e→ fu
232), (f

c
22

e→ hc
26), (f

c
22

e→ hc
27),

(hc
27

e→ ic281), (h
c
27

e→ ic282), (h
c
27

e→ io291), (h
c
27

e→ iu292), Tc,

jc
50 = [(inv I e.z e.x)(mod)(sh)(exc I)(own)]c,

ju
51 = [<Let e.h eq <R s.m (inv I e.z e.x)(mod)(sh)(exc I)(own)>

in <L (time e.t) e.h>>]u,

(io291

e→ jc
50), (i

o
291

e→ ju
51)}.

We close the open vertex io291
with dc

15 and consider its sibling iu292
. ti292 �

ti291 implies the vertex iu292
can be unfolded and closed likewise i291 . We omit

its development (T30). The vertex iu292
is the last from its siblings and we have

reached a next bottom of the tree of all possible cases. Now the next vertices to
be developed are the siblings fu

231
and fu

232
. They similar to i291 , i292 considered

6 Recall the vertex ic281 was generalized.

22

above and we omit closing the siblings (T31). Denote the closed part of the tree
as Tc1 . We have: T32 = {. . . , (bc

3
e→ cc

13), (c
c
13

e→ dc
14), (c

c
13

e→ dc
15), (c

c
13

e→ du
16), Tc1}.

The next term to be unfoled is td16 : T33 = {. . . , (bc
3

e→ cc
13), (c

c
13

e→ dc
14),

(cc
13

e→ dc
15), (c

c
13

e→ do
16), Tc1 , ec

52 = [(inv I e.z e.x)(mod)(sh)(exc I)(own)]c,

eu
53 = [<Let e.h eq <R s.m (inv I e.z e.x)(mod)(sh)(exc I)(own)>

in <L (time e.t) e.h>>]u,

(do
16

e→ ec
52), (d

o
16

e→ eu
53)}.

We close the open vertex do
16 with dc

15. The next vertex to be unfolded is bu
4 :

T34 = {. . . , (ac
2

e→ bo
4), (b

c
3

e→ cc
12), (b

c
3

e→ cc
13), (c

c
13

e→ dc
14), (c

c
13

e→ dc
15), (c

c
13

e→ dc
16),

Tc1 , cc
54 = [(inv e.x)(mod)(sh)(exc I)(own)]c,

cu
55 = [<Let e.h eq <R s.m (inv e.x)(mod)(sh)(exc I)(own)>

in <L (time e.t) e.h>>]u,

(bo
4

e→ cc
54), (b

o
4

e→ cu
55)}.

We close the open vertex bo
4 with dc

15:
T35 = {[τ]c, ([τ]c

e→ ac
1), ([τ]c

e→ ac
2), (a

c
2

e→ bc
3), (a

c
2

e→ bc
4), (b

c
3

e→ cc
12), (b

c
3

e→ cc
13),

(cc
13

e→ dc
14), (c

c
13

e→ dc
15), (c

c
13

e→ dc
16), Tc1}.

The tree T35 is completely closed. The inductive proof has been finished. �
See the figure 1 for the oriented graph of this proof.

23

τ = <L (time e.time)(inv I e.x)(mod)(sh)(exc)(own)>

tb3 = <L (time e.t)(inv e.x)(mod)(sh I)(exc)(own)>

gb3 = <L (time e.t)(inv e.x)(mod)(sh I e.z)(exc)(own)>

tb4 = <L (time e.t)(inv e.x)(mod)(sh)(exc I)(own)>

td7 = <L (time e.t)(inv e.x)(mod)(sh I I)(exc)(own)>

td8 = <L (time e.t)(inv e.x)(mod)(sh)(exc I)(own)>

td9 = <L (time e.t)(inv I e.x)(mod)(sh)(exc I)(own)>

td14 = <L (time e.t)(inv e.x)(mod)(sh I I e.z)(exc)(own)>

td15 = <L (time e.t)(inv e.z e.x)(mod)(sh)(exc I)(own)>

td16 = <L (time e.t)(inv I e.z e.x)(mod)(sh)(exc I)(own)>

tf211
= <L (time e.t)(inv e.z e.x)(mod)(sh I I)(exc)(own)>

tf212
= <L (time e.t)(inv e.x)(mod)(sh I I)(exc)(own)>

tf22 = <L (time e.t)(inv e.z e.x)(mod I)(sh)(exc)(own)>

tf231
= <L (time e.t)(inv I e.z e.x)(mod)(sh)(exc I)(own)>

tf232
= <L (time e.t)(inv I e.x)(mod)(sh)(exc I)(own)>

ti281
= <L (time e.t)(inv e.z e.x)(mod)(sh I)(exc)(own I)>

gi281
= <L (time e.t)(inv e.x)(mod)(sh I e.z)(exc)(own I)>

ti282
= <L (time e.t)(inv e.x)(mod)(sh I)(exc)(own I)>

ti291
= <L (time e.t)(inv I e.z e.x)(mod)(sh)(exc I)(own)>

ti292
= <L (time e.t)(inv I e.x)(mod)(sh)(exc I)(own)>

tk321
= <L (time e.t)(inv e.z e.x)(mod)(sh I I)(exc)(own I)>

tk322
= <L (time e.t)(inv e.x)(mod)(sh I I)(exc)(own I)>

tk33 = <L (time e.t)(inv I e.z e.x)(mod)(sh)(exc I)(own)>

tk34 = <L (time e.t)(inv I e.z e.x)(mod)(sh)(exc I)(own)>

tk351
= <L (time e.t)(inv I I e.z e.x)(mod)(sh)(exc I)(own)>

tk352
= <L (time e.t)(inv I I e.x)(mod)(sh)(exc I)(own)>

tk40 = <L (time e.t)(inv e.x)(mod)(sh I I e.z)(exc)(own I)>

tk41 = <L (time e.t)(inv I e.z e.x)(mod)(sh)(exc I)(own)>

tk42 = <L (time e.t)(inv I e.z e.x)(mod)(sh)(exc I)(own)>

tk43 = <L (time e.t)(inv I I e.z e.x)(mod)(sh)(exc I)(own)>

Table 1. MOESI configurations.

24

[τ]: Property Qq?

?

����t
�

b3: Statement1

�����
True

?

����
�����

True
?

����
c13

a2

��
�������d

-

H
HHHj����t

�
?

d15: Lemma
�����

True
?

����
e20

f22

�
��	 ?

@
@@R

PPPPPPPqt t
�������)

��������������������d d

--

�
��	

True

@
@@R

����
h27

�
����

@
@R

H
HHHHj

XXXXXXXXXz

�������� ����id t t

66

?

HHY6

i281: Statement2

��
���

True

?

����
j39

��
��� ?

HH
HHj

XXXXXXXXXz

���� ���� ���� ����id

-

t t t

�Pi
HHY

Fig. 1. Graph of the automatic proof.

