
The Open TS dynamic parallelization system approach

Sergei M. Abramov1, Alexander Moskovsky1,2, Vladimir Roganov1 , Elena
Shevchuk1

1 Program Systems Institute, Russian Academy of Science,
52020 Yaroslavl region, Russia, Pereslavl Zalessky,

m. Botik, Progam Systems Institute, Russian Academy of Science
{abram,shev}@botik.ru,var@skif.botik.ru

http://www.botik.ru/~abram/
2 Moscow State University, Chemistry Department,

119992 Moscow, Russian Federation, Vorobyevy Gory 1/3
moskov@lcc.chem.msu.ru

Abstract. The paper describes the Open TS – a system for parallel computing,
which primary goal is to provide high-level programming tool for a wide vari-
ety of modern parallel computers. The C++ language has been extended with a
few additional keywords that provide means to denote potential parallelism
grains in a source code. A runtime system has been implemented on top of
Message-Passing Interface (MPI), with dynamic load balancing. While over-
head introduced by the Open TS runtime seems tolerable, the by-product bene-
fits of implicit, dataflow-style approach to parallelizing computation are de-
scribed: portability, fault-tolerance and adaptation to wide-area networks by
synthesizing computational web-services.

1 Introduction

 The Open TS systems is being developed by our group during the recent years.
During this time, a number of applied programs and scientific codes has been devel-
oped with the help of this technology, see for instance [1],[2]. The primary develop-
ment goal was to provide high-level tool for programming for computational clusters
and SMP systems, however, an approach allows us to easily extend the system to
grids of computational clusters as well.

The manuscript is organized as the following. In the first section, we outline the
approach for writing parallel programs and we discuss the benefits of the Open TS
approach: easy portability across many hardware platforms, fault-tolerance. The last
one is dedicated to the benchmarks, including the re-implementation of ALCMD and
MPI PovRay codes with Open TS technology.

2 Open TS approach.

The approach of Open T-system (which stands for the Open TS) is similar to the
coarse –grain dataflow computational model, with some notable distinctions. The
T++ language is devised, which is an extension of C++. In T++ programmer use a
few additional keywords to designate what function invocations can produce grains
of parallelism (dataflow graph nodes), what data can be shared by or transferred be-
tween the grains of parallelism (dataflow variables or “futures” [3], which called or
“non-ready variables” in Open TS). The grains (both data and computation) should be
kept large enough to make small the overhead of the runtime system.

The T++ is a “seamless” extension of C++: most T++ programs can compiled with
C++ compiler using some “dumb” macro-definitions for T++ keywords, and result is
a correct sequential program.

The two basic notions of the T++ are:
• T-function, which means pure functions with no side-effects, which can

be used as a grain of parallelism. Open TS runtime can execute T-
functions as independent threads, or migrate threads between computa-
tional cluster nodes, enabling load-balancing.

• T-variable. The variable can be cast to the “original” C++-type variable,
which makes the thread of execution suspend until the value becomes
ready. That it very similar to “dataflow variable”, or “futures” [2]. That
also differs T++ from “standard” data-flow models, where task is ready
for execution only after all incoming data are ready – in opposite, threads
in Open TS can be launched before any incoming data for a grain are
ready.

The sample program, calculating Fibonacci numbers is introduced below:

tfun int fib(int n) {
 if (n<2) return 1;

 return (fib(n-1)+fib(n-2));

}

tfun int main (int argc, char *argv[]) {
 int n = atoi(argv[1]);

 printf(“Fibonacci %d is %d\n”,n,(int)fib(n));
 return 0;
}
The differences with the original C code are shown in bold: two “tfun” keywords

and casting of non-ready value returned by the T-function “fib” to the original “int”
type, which makes the “main” function thread to wait for the “fib” result.

Open TS provides very important features, which ease burden of application de-
velopment and allows programmer concentrate on algorithm, not managing environ-
ment:

• Automatic garbage collection of non-used values
• Multiple assignments of dataflow variables.

To implement the last feature, a tricky protocol has been introduced, which de-
scribes the relationships between producer’s execution thread lifecycle and value
“readiness” or availability to consumer’s threads.
Alternative technologies of compilation have been investigated: converter based on
Open C++ [4] and front-end language for GNU compiler collection, the first solution
is more flexible, while the last supports many advanced C++ language features.

 The runtime support library is implemented in C++ and utilizes MPI subset for
data exchange in a computational cluster environment.

An important implementation feature is a work migration model. In cluster envi-
ronment, each MPI process has it's own set of tasks and it’s own meta-scheduler
instance (thread) running. Tasks are T-function invocations (with some exceptions:
sometimes it may be more efficient to evaluate T-function call immediately. So, T-
functions are potential parallelism grains, not obligatory). Tasks can be either running
or pre-natal. In a general case, pre-natal tasks can be moved between nodes, while
running tasks cannot. Macro-scheduler can either send one or more pre-natal tasks o
another node(s) or execute pre-natal task, thus making task running. When executing,
task can invoke T-functions, thus creating more tasks (possibly, of another type).
Optimal load balancing is achieved with the help of heuristic algorithms or algo-
rithms, specific to certain applications.

3. Benefits of Open TS approach

The implicit parallelization gives the Open TS unique opportunity to adapt appli-
cation to the computational resources available. Theoretically, some T++ programs
can be compiled for such targets like FPGA, or FPGA+CPU devices. More practi-
cally, a load balancing heuristic can handle the situation, when CPU of different
speeds are used in the computational cluster – even re-linking is not necessary. The
Open TS applications can be run in Grid environment – using appropriate MPI im-
plementation. However, load balancing techniques for grids is a subject of ongoing
research.

The Open TS “T-functions” can be used to create computational web-services, and
the appropriate tools have been developed by our group. That gives two opportuni-
ties:

• Integration of Open TS application to the larger computational environ-
ment (e.g. workflow) with help of XML-based tools.

• Work migration between computational clusters via web-service inter-
face. One can imagine a set of computational clusters connected to the
Internet, exchanging workload (T-tasks) via web-service interface.

 Another important benefits of Open TS dataflow model is the ability to re-start
tasks, which execution has failed for some reasons (e.g. due to hardware failure),

similarly to other dataflow-based tools like Mentat [5]. In the Open TS, this is a bit
more complicated, since software distributed shared memory is used to facilitate non-
ready values implementation, so it’s practical to implement
”strict” fault-tolerant mode for T-applications.

3 Benchmarks.

The OpenTS implementation of embarrassingly parallel (EP) test of NASA NPB suite
demonstrated 96% of theoretical speedup in a computational cluster with less than 10
nodes (EP class A) and up to 86% in 32 CPU cluster of 16 dual-CPU nodes (EP class
C). EP benchmarks were also run on heterogeneous clusters (of different CPU
speeds) and demonstrated good speedup also.

Other benchmarks include re-implementation of MPI patch for PovRay ray-tracer
and MP_Lite library (part of Ames Lab Classic Molecular Dynamics code, ALCMD).
Execution times of MPI and Open TS applications compared on various clusters and
differ from each other by 5-10% only, while the volume of source code is 10-7 times
smaller for Open TS.

4 Acknowledgements

This work is supported by basic research grant from Russian Academy of Science
program “High-performance computing systems on new principles of computational
process organization” and basic research program of Presidium of Russian Academy
of Science “Development of basics for implementation of distributed scientific in-
formational-computational environment on GRID technologies”, as well as Russian
Foundation of Basic Research grant 05-07-08005-ofi_a.

As well, we thank Igor Zagorovsky, German Matveev, Alexandr Inyukhin, Alex-
andr Vodmomerov, Eugene Stepanov, Ilya Konev, Elena Shevchuk, Yuri Shevchuk,
Alexei Adamovich, Philip Koryaka and others, who contributed to the implementa-
tion and development of Open TS and previous T-system versions.

References

1. Arslambekov R.M., Potemkin V.A., Guccione S. Parallel version of MultiGen for multi-
conformational analysis of biological activity of compounds// XII International Conference
CMMASS'2003, Book of abstracts ;

2. A. Kornev, “ On globally stable dynamic processes” //Russian Journal of Numerical Analy-
sis and Mathematical Modelling, Volume 17, No. 5, p 472

3. http://en.wikipedia.org/wiki/Future_%28programming%29
4. Chiba S. A “Metaobject Protocol for C++” , In Proceedings of the ACM Conference on

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), page
285-299, October 1995. http://www.csg.is.titech.ac.jp/~chiba/openc++.html

5. A. Nguyen-Tuong, A. S. Grimshaw , J. F. Karpovich “Fault Tolerance via Replication in

 Coarse Grain Data-Flow”, http://www.cs.virginia.edu/~jfk3w/papers/ft-paper.ps

