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Abstract. The author constructed a transformer Scp4 of functional programs.
The transformer uses the technology known as Turchin’s supercompilation.
Scp4 was implemented in a functional language Refal-5. The input language
for Scp4 is also Refal-5. In the paper we consider the general structure of the
supercompiler and give a number of examples of transformations.

1. Introduction

Supercompilation is a program transformation technique introduced
in the 1970s by Valentin F. Turchin [21, 22, 24–26]. He suggested a task
of creating tools to observe operational semantics of a program, when a
function F that is to be computed by the program is fixed. As a result
of such observations a new algorithmic definition of an extension of the
function F must be constructed.

The Turchin’s ideas were studied by a number of authors for a long
time and have to some extent been brought to the algorithmic stage.
We constructed an experimental supercompiler for a functional language
Refal-5 [23]. The Scp4 project was discussed with V. F. Turchin. More-
over, he initiated and supported our work.

Scp4 has been implemented once again using Refal-5. Sources of the
supercompiler, executable modules and sources of Refal-5 are available
for immediate download [16, 27]. A user manual on the supercompiler
and reports on several interesting experiments with Scp4 can be found
in [6–10] (by A. V. Korlyukov). A. P. Konyshev implemented a compiler
from the intermediate Scp4’s language into the language C [11].

In this paper we continue to describe the supercompiler Scp4 [13,14].
We give a layout of the supercompiler, after that we make the notations
more precisely. Finally, we report a number of experiments with the
supercompiler.

Let a program in a language be given, as well as a parameterized
input entry of the program. Then such pair defines a partial mapping.
By definition, a supercompiler is a transformer of such pairs. The only
requirement for the transformer is that it must preserve the mapping
values on the mapping domain. The supercompiler Scp4 is a computer
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program for transformation of algorithmically defined mappings with the
objective of optimization of the running time.

Scp4 unfolds a potentially infinite tree of all possible computations.
It reduces in the process the redundancy that could be present in the orig-
inal program. It folds the tree into a finite graph of states and transfor-
mations between possible configurations of the computing system. And
finally it analyses global properties of the graph and specializes this graph
with respect to these properties (without an additional unfolding). The
original program definition is thrown away unchanged, i.e. the result-
ing definition is constructed solely based on the meta-interpretation of
the source program rather than by a step-by-step transformation of the
program.

There is a huge amount of literature on program transformation. The
closest to our work is the work on generalized partial computation [3],
partial evaluation [5, 19], partial deduction [17], deforestation [28] and
mixed computation [2]. Both generalized partial computation and super-
compilation exploit negative information on the ranges of parameters, on
intersection of the ranges, while conventional partial evaluation does not.
Both the first two techniques work online, while the third works offline,
even though annotation of input programs for Scp4 can optionally be
done to improve quality of residual programs. Supercompilation is dis-
tinguished from the other techniques by the possibility of extending of the
input mapping domain. That allows to use information on function call
values, which cannot be completely evaluated during transforming stage.
Usage of such kind of information is presented in deforestation, which
simplifies the compositional structure of some programs. The idea of the
Scp4 general structure is close to the main idea of mixed computation.

The size of the Scp4 system is about 19500 lines of commented pretty-
printed source code (800 KB). An online demonstration of the supercom-
piler is available on an Internet site [16]. All residual programs from our
paper were constructed automatically by Scp4 and manually modified for
formatting purposes only.

2. Layout of SCP4

This section considers a rough scheme of the structure of Scp4.
Given a program written in Refal-5 and a parameterized input entry of
the program, Scp4 transforms the pair (into a similar pair in the same
language) to decrease its running time on specific input values of the
parameters (data) preserving at the same time its running time on all
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Refal-5
Entry config.
Source prog.

-
-

Internal
language

task
final input-prog.

??
result := ; /* undefined */
do {

Refal-step;
} while( the task is not solved )

/* still is not completely evaluated */
if( the task is determined )

{ result := task; }

??

Refal-5
�
� result

Figures 1. General structure of the Refal interpreter

the other data. By the running time we mean logical time rather than a
precise value of any physical clock. The transformer is allowed to extend
the domain of the defined mapping one way or another. Operationally,
the extension can be expressed as the elimination of both abnormal stops
and loops. More precisely, Scp4 receives as an input a number of param-
eterized entries and it transforms all of the partial mappings at once. We
will refer to the entries as the tasks to be solved by Scp4.

We start with an analogy between the Refal-5 interpreter and the
supercompiler (see Fig.1 and Fig.2). The analogy reflects the basis of
supercompilation. Both the two computing systems work with an in-
ternal language, called Refal-graph language. This language describes
the transformation (or performing) process, as well as its results, more
adequately than Refal itself.

Interpretation consists of elementary logically closed actions (steps).
The sequence of steps is completely predetermined by a specific input
entry and a program. The result of each step is a new input entry for
the subsequent step. Interpretation ends when the task of evaluating of
the given entry is fully solved or the interpreter has detected a one-point
mapping is undefined on the given input data.

Supercompilation iterates an extension of the interpretation of Refal-
graph steps, called driving, on parameterized sets of the input entries.
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Driving constructs a directed tree (a “cluster”) of all possible computa-
tions for the given parameterized input entry and a given Refal-graph
step. The edges of this tree are labeled with predicates over values of
the parameters. The predicates specify concrete computation branches.
The leaves contain parameterized input entries to the next call of driv-
ing. The main aim of driving is to perform as many actions uniformly on
the parameterized input data as possible. Immediately after the driving,
every Scp4 iteration calls folding. The purpose of folding is to split the
parameterized entries (to break up a task into subtasks), to transform
the whole potential infinite tree (not just a cluster, and, more generally,
intermediate potential infinite graph) derived by the driving iterations
into a meta-structure – a graph of trees, and, finally, to fold infinite
sub-branches of this graph of trees into some finite loops. The subtasks
are the roots of the trees of possible computations. We will say a task
described in a node is solved if all branches starting in the node are
folded. In this case some global properties of the sub-graph rooted in
the node are analyzed and the sub-graph is specialized (without any ad-
ditional unfolding) with respect to the properties. Information on the
global properties is propagated over the tasks to be solved. If the current
solved task is undefined on all values of the parameters then the branch
incoming in the task node is pruned, otherwise the sub-graph outgoing
from this node becomes a candidate for a residual “function”. The Scp4
iterations stop when the whole potential infinite meta-graph has been
folded, otherwise a strategy chooses a new leaf for the following driving.
The goal of dead-code analysis (see Fig.2) here is to identify input and
output formal parameters of the residual “functions”, which values do not
affect the values of the partial mappings defined with the source tasks
(to be supecompiled). In general, dead-code analysis reduces the arities
and co-arities of the residual “functions”. In particular, removes some
function applications. Thus, we emphasize the Scp4’s output is defined
in terms of the parameters (semantic objects).

Further sections describe each process gradually in more details.

3. The REFAL language

The Refal programming language (by V. F. Turchin) is a first-order
functional language with an applicative (inside-out) semantics. Roughly
speaking, a program in Refal is a term rewriting system. The semantics
of Refal is based on pattern matching. As usually, the rewriting rules are
ordered to match from the top to the bottom. The terms are generated
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using two constructors. The first is the concatenation. It is binary,
associative and is used in infix notation, which allows us to drop its
parenthesis. In Refal the blank is used to denote the concatenation.
The second constructor is unary. It is syntactically denoted with just
its parenthesis (that is without a name). Angular brackets are used to
denote a function call. Its name is put after the left bracket. Every
function is unary. In Refal the ground terms are referred to as constant
expressions. Empty sequence is a special basic ground term. This term is
denoted with nothing and called “empty expression”. It is neutral element
(both left and right) of the concatenation. All other basic ground terms
are named as “symbols”. There exist three types of basic non-ground
terms (called variables) - e.name, s.name and t.name. An e-variable can
take any expression as its value, an s-variable can take any symbol as
its value, a t-variable – any symbol and any expression enclosed in the
parenthesis.

Thus, Refal data d and patterns pat are defined with the following
grammar:
d ::= (d1) | d1 d2 | SYMBOL | empty
pat ::= tpat | pat1 pat2 | empty
tpat ::= (pat) | s.name | t.name | e.name | SYMBOL
Here empty is the empty string (nihil).
Example: The following program replaces every occurrence of the iden-
tifier Lisp with the identifier Refal in an arbitrary Refal datum.
$ENTRY Go { e.inp = <Repl (Lisp Refal) e.inp>; }

Repl { (s.x e.v) = ;

(s.x e.v) s.x e.inp = e.v <Repl (s.x e.v) e.inp>;

(s.x e.v) s.y e.inp = s.y <Repl (s.x e.v) e.inp>;

(s.x e.v) (e.y) e.inp =

(<Repl (s.x e.v) e.y>) <Repl (s.x e.v) e.inp>; }

On the right side of the first sentence of Repl we see the empty expression.
Below we use sometimes the meta-symbol [] for the empty expression.
The left sides of the last three sentences and the right side of the second
sentence of Repl show associativity of the concatenation.

Some additional information about Refal can be found in Appendix
A. A detailed description of the language is available in an electronic
format [23].
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4. Language of parameters

An input entry of a program, called (in Refal) view field, determines
the memory part to be evaluated by the abstract Refal-graph machine.
One step of the abstract machine is a logically closed transformation of
the view field. There naturally appears a sequence:
V iewField(0) = Entry;
V iewField(n + 1) = Step(Program, V iewField(n));
We are going to give a parameter language for describing of the view
fields.

4.1. Parameterized sets of data. At the beginning we define a
language for describing some Refal datum sets. It is convenient to repre-
sent the language with a pair positive-pd and negative-pd. The first
part represents “positive” information about the data, while the second -
“negative”. (Below the double brackets are meta-symbols.)
pd ::= [[ positive-pd , negative-pd ]]
positive-pd ::= t positive-pd1 | empty
t ::= p | d | (positive-pd) /* d is a Refal datum */
p ::= s-parameter | e-parameter | t-parameter
s-parameter ::= s.name
t-parameter ::= t.name
e-parameter ::= e.name
empty ::= [] /* nihil */

An e-parameter represents the set of all constant expressions (Re-
fal data), an s-parameter represents the set of the Refal symbols and
a t-parameter - the union of the Refal symbol set and the set of all
constant expressions enclosed in the parenthesis. Other terms from
positive-pd are interpreted by the construction of the terms.

Below parameters are named by natural numbers, while variables are
named by identifiers (to exclude confusion).
negative-pd ::= restriction, negative-pd|[]|∅
restriction ::= st1 # st2 | e-parameter # []
st ::= s-parameter | SYMBOL
s.n1 # s.n2 is a restriction on the sets of the parameter ranges: the
sets do not intersect. s.n # SYMBOL and SYMBOL # s.n are restrictions
on the set of the parameter range: SYMBOL does not belong to the set.
SYMBOL1 # SYMBOL2 represents the empty set if these symbols do not
coincide and is a tautology otherwise. e.n # [] - the empty expression
does not belong to the parameter range. The empty expression [] staying



The Supercompiler Scp4: General Structure 456

alone represents a tautology, while ∅ - the empty set. Comma (here and
in the pair defining pd) is interpreted as a sign for intersection of the sets.

4.2. Parameterized sets of view fields (stacks) and Refal -
expressions. The parameter language used by Scp4 is a first order lan-
guage: there are no parameters, which domains contain function names
or function application constructors. All function names represent them-
selves. The constructor of function application < ... > is a constant
encoded with the data (Call INFO). INFO is an information about the
call, in particular, it contains description of the domains of the function
call arguments and the image of the call written in the positive-pd
language. Graphically coinciding parameters from the arguments of dif-
ferent calls represent the same set. The links between the elements of
the stack are described by formal output variables out.name, which are
only fixed meta-names for the values of the corresponding function calls.
The “negative” part of the description of the parameters is common for
all calls from the stack.
Example: <F s.1>←out.1; <G <F e.2> out.1>←out.0;
Here the sign ← means an assignment of the left side to the right1 one.
Sometimes we will write <F e.2>←e.4 and mean that the domain of the
right side is restricted by the F’s image.

5. Internal language

Henceforth, we assume all trees are developed from the left to the
right. The internal working language of the transformations is a language,
to which V. F. Turchin refers as Refal-graphs. This language describes
the transformation process, as well as its results, more adequately than
Refal itself. Here, we consider some properties of the Refal-graph lan-
guage. Our purpose is to introduce the reader the main concepts. A
detailed description of the language may be found in [13]. See also [21].

1 We use the Turchin’s arrow denotations [24–26] for describing the process of
supercompiling. The meaning of the arrows is “the range of the part originating an
arrow is narrowed to the range of the other part where the arrow incomes”.
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5.1. Input subset of the Refal-graph language. The input sub-
set is an applicative functional language based on pattern matching with
syntactical means for describing the directed trees for analysis of all pat-
terns (from a “function”) at once. Nodes of the trees are “functional”, i.e.
without backtracking, edges are numbered. The patterns are explicitly
decomposed using a finite set of simple patterns (Sect. 6.1). Some neg-
ative information reflecting failure over the upper branches (in a given
branching) and expressible in the language negative-pd (where the pa-
rameters are treated as the variables) is written explicitly (on the given
edge) in negative-pd. Leaves of the trees correspond to the right sides of
the Refal-sentences, hence the concept of a step of the abstract machine
of the input subset of the Refal-graph language is determined (straight-
forward similar to the basic Refal step: choosing of an active function
call, pattern matching and replacement of the active call with the right
side of the sentence chosen by the pattern matching). Every function
from this input subset is unary.
Example: The following two definitions specify a function F in Refal
and in the input subset of Refal-graph language.
F { F {
A e.x = e.x; +[1] e.inp→s.v e.u;
s.y e.x = s.y e.x; :{ +[1] s.v→A;{e.u←e.out;};

= ; +[2] s.v # A; {s.v e.u←e.out;}; }
} +[2] e.inp→[]; {[]←e.out;};

}
Where the arrow → is interpreted as matching of the variable’s value
from the left side with the pattern from the right side (of the arrow).
See Sect. 4.2 for the meaning of the ←. The digits inside the square
brackets are numbers of the branches in a concrete branching. The plus
sign stands for an alternative.

5.2. Internal language for transformations. In effect, programs
written in the input fragment of the internal language are not subjects
to be transformed by Scp4, but only to be performed. Scp4 derives new
programs in the internal transformation language (the whole Refal-graph
language). The transformation language is a superset of the input Refal-
graph language.

The colored graph nodes contain parameterized description of the
function stacks (Sect. 4.2) at the given points. (We will explain the
colorings later.) The nodes also may contain global information of the
supercompiling process. The functionality of the nodes remains valid.
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Every node has a unique name, which is the creation time of this node.
There is no analogue for the Refal division of the sentences into the two
sides. A function application may appear on an edge and the application’s
value may be tested along the edge likewise the input arguments to the
graph. Thus this language allows decomposition of the function calls
onto single edges. The decomposition may be done by means of Let-
constructors. “Functions” in this language may have nontrivial arities
and co-arities. A “function” transforms the environment defined by the
input format and the active call. The function result is an environment
defined by the output format and the substitution at the end of the chosen
branch completes the recursion. Here the analogue of the Refal-step is a
sequence of the elementary actions starting with an active function call
and ending with searching of the next active call. The output function
formats and the function calls are colored.
Example:
* Input Format: { e.1←e.1; }
F7 {
+[1] e.1→[]; (I)←e.out;
+[2] e.1→I e.11; {e.11←e.1;} <F7 e.1> {e.out←e.2;}

e.2→(e.3); {e.11←e.1; e.3←e.4;}
<F16 e.1, e.4> {e.out1←e.5;} {(e.5)←e.out;}

}
* Inductive Output Format: { (e.6)←e.out; }
That is a fragment of a definition written in the internal language. The
output and input environments of the function call are explicitly written.
We see the two “steps” on the second branch. The I is a constant.

6. Driving

Consider a school algorithm (given in a non-formal language) for cal-
culation of the root set of a liner equation with one variable. Let us
think of coefficients of the monomials as data and of the other part of
the syntactical equation structure as a program. Thus, our algorithm is
turned into an “interpreter” - a solver for the program-equation. This
solver has no loops (we assume arithmetic operations are basic primi-
tives). Next, consider the liner equations with parameters: some of the
data-coefficients became parameters. A schoolboy solving such equations
is a master of the driving concept. The answer, naturally, is expressed
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in the parameter terms and is a tree splitting the parameters and per-
forming algebraic actions being uniform on the parameters. Recall that
above we named the result of the driving as cluster.

Chosen a parameter language we are able to refine upon the concept
of the driving in the input subset of the Refal-graph language. This
section considers just this subset. First, we are going to focus on the
strict driving (corresponding to the strict Refal-graph interpretation),
next we will give some remarks on the lazy driving.

6.1. General structure of driving. The driving is an extension
of the interpretation of one Refal-graph (its input subset) step on the
parameterized sets of the input entries. The purpose is to perform as
many actions of the Refal-graph machine uniformly on the parameter
values as possible.

A step of the abstract Refal-graph machine:

Step: prog × name × D-env 7→ stack × D-env, D-env: vars 7→
data

consists of two logical stages. On the first stage the machine chooses a
path from the root of a graph to a leaf, on the second stage the func-
tion stack is modified according to the leaf syntax and the environment
calculated on the first stage. In fact there exists a single variable in the
environment, but we prefer to think about the variable as a set of the
variables consisting of one variable.

Refine on the interpretation. On the first stage, the values of the
variables from the current environment match the simple patterns (Sect.
5.1). (The task for matching a datum d to a patter p is a task for solving
an equation p = d. The result of the solution is either the values of the
variables from the pattern p or the information that the equation has no
solutions.)

• If the matching is successful, then the environment is modified.
If an edge is passed: the machine reached either a branching-
point or a leaf. In the second case, the path is chosen. In the
first, the current environment is stored in the branching point
(a node) and the machine passes to the consecutive matchings
of the current values of the variables with the patterns labeling
the first edge outgoing from the current node.
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• If the matching is fail, then the backtracking to the closest
branching-point happens, where the environment (saved in this
node before) is restored, and the next branch outgoing from the
node is considered as a possible path for reaching a leaf.
• If the closest branching is exhausted, then the partial mapping

corresponding to the graph is declared as undetermined on the
given input environment.

Remark 1: Functionality (Sect. 5.1) of the Refal-graph branching-point
implies every node in the graph, for the sake of interpretation, is equal
in its properties to the graph entry point: the pair (Graph-name, Node-
identifier) can be considered as an independent “function”-subgraph.
The arity of the subgraph is defined by the number of the variables in
the environment env of the given node. Henceforth, we will denote the
entry point to the subgraph by <Graph-namend−id env>.
Driving: prog × namend−id × PD-env 7→ Cluster, PD-env: vars 7→

pd

Driving receives as an input a parameterized environment Pd-env, the
values of the variables in which there may be an arbitrary parameterized
set of the data, in accordance with the variable’s type (Sect. 4.1). When
Driving reaches a branching-point, like Step, it stores the current state
of the parameterized environment (in this node), takes the first edge out-
going from the node and tries consecutively to solve the equations with
parameters p = pd, where the p-s are patterns labeling this edge and the
pd-s are the values of the parameterized variables to be matched.
Remark 2: By definition, the supercompiler may extend the domain of
the partial mapping defined by the parameterized entry point and the
program to be transformed. That provides a possibility to use lazy eval-
uation in supercompile-time. I.e. the driving may be an extension of one
step of a lazy abstract Refal-graph machine. In this case, the variables
in the parameterized environments take any parameterized Refal expres-
sions (Sect. 4.2), according to the variables’ ranges. The user may choose
a concrete strategy for the driving (strict or lazy).

Definition 1: The syntactical construction variable→pattern is called
contraction. Semantics: the value of the variable has to match the pat-
tern. A contraction is called elementary, if and only if
contraction∈ { e.n→(e.n1) e.n2, e.n→e.n1 (e.n2), t.n→(e.n1),
e.n→SYMBOL e.n1, e.n→e.n1 SYMBOL, t.n→SYMBOL, s.n→SYMBOL,
e.n→s.n1 e.n2, e.n→e.n1 s.n2, t.n→s.n1, e.n→t.n1 e.n2,
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e.n→e.n1 t.n2, s.n→s.n1, e.n→[] }.
The patterns from the right sides of the elementary contractions are called
elementary patterns.

Statement 1. There exists an algorithm for “solving” any equation
p = pexpr, where p is an arbitrary elementary pattern and pexpr is an
arbitrary parameterized Refal expression (in our language of parameters,
see Sect. 4.2). The result of the algorithm is:

• the values of the pattern variables written in the language of the
parameterized Refal expressions;
• or a directed finite tree (cluster) splitting the equation param-

eters in the sub-cases (subsets) “if P(...) then ...else if
Q(...) ...”, which predicates are written in the elementary
contraction language and which leaves are the descriptions of
the pattern variables’ values (from the right sides of these con-
tractions) written in the language of the parameterized Refal
expressions;
• or the information that the root set of the equation (for all values

of the parameters) is the empty set;
• or a parameterized function call such that the equation solutions

depend on the value of the call.

The algorithm for solving the parameterized equations may be found
in [21,24].

Corollary 1. Predicates labeling the driving cluster edges can be
written as compositions of the elementary contractions on the parameters.

Recall that natural numbers name the parameters, while identifiers
name the variables.
Example 1:
The equation: s.x e.y = [[s.3 A e.2 <F e.1>, s.3 # B, e.1 # [] ]]
The solution has no additional conditions on the parameters:
[[{s.x = s.3, e.y = A e.2 <F e.1>}, s.3 # B, e.1 # [] ]]
Example 2:
The equation: s.x e.y = [[ e.1 A e.2 <F e.1> , e.2 # [] ]]
The solution:
if e.1→[]; then [[ {s.x = A, e.y = e.2 <F >}, e.2 # [] ]]
else if e.1→s.11 e.12;

then [[{ s.x = s.11, e.y = e.12 A e.2 <F s.11 e.12>}, e.2 # [] ]]
e.y = e.12 A e.2 <F s.11 e.12> }, e.2 # [] ]]
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else "No roots";
Example 3:
The following equation can arise from the composition of the following
three elementary contractions e.n→s.x e.m; e.m→s.z e.y; s.z→s.x;.
s.x s.x e.y = [[ s.3 s.4 e.2 <F e.1> , s.4 # A ]]
The solution:
if s.4→s.3; then [[{s.x = s.3, e.y = e.2 <F e.1>}, s.3 # A ]]
else "No roots";
Example 4:
The equation: e.y s.x = [[s.3 A e.2 <F e.1>, e.2 # [], s.3 # A]]
The solution depends on the values of the call <F e.1>.

Dividing of the parameters into the subsets depends on a concrete
algorithm solving the parameterized equations. Further actions of the
driving depend on the results of the algorithm.
Remark 3: The number of edges outgoing from a node of the cluster
may be grater, lesser or equal to the number of the edges outgoing from
its pro-image (under the mapping of the driving).
Remark 4: A contraction on an edge of the cluster may be derived,
which is absent in the source graph.
Remark 5: There can be constructed a node such that all edges outgoing
from the node have a common contraction.
Example 5: (of driving a×x + b = 0)
$ENTRY Go {e.1 s.2 (e.3) = <Linear e.1 s.2 e.3>;}

Linear { 0 0 = "Any real number";

0 s.b = "No roots";

s.a s.b = (Div (’-’s.b) s.a); }

The following pair is input to the driving. ’:{’ stands for the branching
point.
{ e.1 s.2 e.10←e.inp; };
Linear {
+[1] e.inp→s.u2 e.x; e.x→s.u3 e.x1; e.x1→[];

:{+[1] s.u2→0;
:{+[1] s.u3→0; {"Any real number"←e.out;};
+[2] s.u3 # 0; {"No roots"←e.out;};
};

+[2] {(Div (’-’ s.u3) s.u2)←e.out;};
};

}
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The cluster of the driving:

e.1→e.1 s.2 (e.10);
:{+[1] e.1→s.3 e.11; e.11→[]; e.10→[];

:{+[1] s.3→0;
:{+[1] s.2→0; {"Any real number"←e.out;};
+[2] {"No roots"←e.out;};
};

+[2] {(Div (’-’ s.2) s.3)←e.out;};
};
+[2] e.1→[]; e.10→s.5 e.11; e.11→[];

:{+[1] s.2→0;
:{+[1] s.5→0; {"Any real number"←e.out;};
+[2] {"No roots"←e.out;};
};

+[2] {(Div (’-’ s.5) s.2)←e.out;};
};

};

6.1.1. Reconstruction of the function stack. In the case of the lazy
driving, a function call <Fnd−id env> may be a hindrance for solving
a parameterized equation (see Statement 1), i.e. it is necessary to know
some properties of the call value. Then the function stack is reconstructed
- the call <Fnd−id env> is pushed out on the top of the stack in the closest
branching-point, and afterwards the driving works with the definition
Fnd−id. The stop point of the driving of the current call <Currentnd−id1

env1> (over the Refal graph) is memorized in order, if needed, to continue
the driving of <Currentnd−id1 env1> from this point.

Corollary 2. A cluster of the driving may contain the sub-trees
corresponding to diverse subgraph-“functions” of the program to be trans-
formed.

Remark 6: The driving can start with any node of the source graph
rather than only with the root of the graph.

Statement 2. The partial mapping specified by the driving is a total
mapping. (No infinite loops).

The statement is implied by the two remarks: 1) the number of
reconstructions of a given stack is bounded by the number of function
calls in the stack; 2) the number of nodes in the source graph is finite.
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6.1.2. The strategy for deriving of an input format. The nodes of the
driving cluster are painted in two colors distinguishing the pivot and the
secondary points. In Scp4 we use the following strategy to paint cluster
nodes.

If all leaves contain trivial stacks (no function call), then all
branching-points are marked as secondary, otherwise

• the left-most branching-point of the parameters is marked as
pivot, all others are painted in the secondary color;
• it is possible that the root of the cluster is not a branching-point;

in this case we paint it as secondary when there exist branching
points in the cluster. If there are no branching-points, then the
Refal-step can be uniformly interpreted on the parameterized
input data. In the last case a color of the root depends on the
strategy of the driving chosen by the user.

7. Folding

The second tool is folding. The tool has no analogies in the abstract
Refal-graph machine. (In the case of “utterly lazy” evaluation, the search
for the call to be evaluated among the previous completely evaluated calls
may be considered as an analogue.) It folds the meta-tree of all possible
computations in a finite graph and is launched immediately after the
driving. This tool takes into account only the pivot nodes. Exactly those
of them, which really fold the tree, are declared as basic.

Refine: the folding tries to wrap the part of the path, which is not
folded to a given moment, from the meta-tree root to a pivot node (Sect.
6.1.2), further referred to as Current-node, in the current driving cluster
if such node does exist. The folding is divided in two logically closed tools:
reducing and generalization. Both tools use not only syntactical but also
semantic properties of the function stack. For the first time the idea of
the semantic part of the algorithm was reported in Obninsk (1989) by
Valentin F. Turchin [22].

7.1. Reducing. Recall that we are working with the first order lan-
guage of the parameters. Let the function call stack grow from the right
to the left with the left most call active. Let a function call stack be
split into a starting non-zero length segment and the tail part, then the
computations on the stack are consequently performed by the starting
segment and, afterwards, by the tail in the context of the environment
calculated during the first stage.
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Given a current pivot node, the reducing looks for another pivot node
(called Previous-Node) on the above-mentioned path, such that the set
of function stacks (described by the parameters) of the node not only is
a superset of the set of function stacks of a starting segment of the cur-
rent node, but also there exists a parameter substitution that reduces the
description of the previous set of stacks to the description of this start-
ing segment of the current node. Thus, all computations defined by this
starting segment, by means of the substitution (maybe defined indirectly
through a function call), can be reduced to the computations defined by
the previous pivot node. The tail part of the current parameterized stack
is declared as a separate task for the supercompiler: the result of evalu-
ation of the starting segment is declared as unknown at this stage of the
transformations. The output environment of the segment is completely
undefined, i.e. it is described by some fresh e-parameters.
Example 1: Consider the following two stacks:
[[<F t.10 e.11>, ]] and [[<F e.1 t.2>, ]]. The sets defined by these
parameterized descriptions coincide, but there are no substitutions of the
parameters reducing one description to the other.

If there is no suitable previous pivot node, then the meta-graph of all
possible computations remains unchanged, otherwise, the current stack
is split into two: the first part of the task (defined in the current stack)
for developing the meta-graph is reduced to the task considered before
(see above). An induction step on the structure describing the function
stack was exercised. Besides, both the splitting of the stack and the re-
ducing substitution define a set of sub-tasks and relations between them:
a decomposition of the tasks has occurred. The decomposition forms a
sequence of the tasks for developing the trees of possible computations.
Further the tasks are resolved one by one. From the point of view of the
supercompiler, these tasks are the entry points for transformations going
on in the context of the meta-graph constructed by the given moment.

7.1.1. The strategy for processing of the meta-tree. As mentioned
above the subject to be folded is the path from the meta-tree root to
the current node. The pivot nodes are run consequently along this path
according to its orientation - from the left to the right (in other words,
in the order of the time of creation of the nodes). Before every attempt
to reduce the current pivot node to the previous pivot node, the reducing
algorithm tries to reduce the current node to the basic nodes of the com-
pletely folded sub-trees, which roots are located at the ends of the edges
outgoing from the previous node and different from the branch incoming
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into the current pivot node. The basic nodes are considered also in order
of time of creation of these nodes.

The parts of the meta-graph, which are under the basic nodes, are
called the components of folding. The components are the candidates for
inclusion into the residual graph.

7.2. Generalization. From the point of view of generalization, the
set of parameterized stacks of the pivot nodes from the partially folded
(potentially infinite) meta-tree is a set of the induction hypotheses of
every path in the tree will have a pivot node in a cluster of the driving
such that the stack of the node will be completely reduced to the stacks
of the other basic or pivot nodes existing in the meta-tree at the moment
of the reducing attempt.

The algorithm of generalization is a tool for guaranteeing of finiteness
of the number of these hypotheses, which succeeded in “proving” during
development of the tree. If the reducing has not found a pivot node to
which the current node is reduced (maybe partially), then generalization
looks for a previous pivot node (on the path from the tree root to the
current pivot node), which is “similar” to the current pivot node.

7.2.1. Similarity. A “similarity” relation links semantic loops in the
meta-tree with syntactical structures in this tree. It is convenient to
render the relation as intersection of a “similarity” relation of a pure
function structure of the stacks (of a sequence of the function names) and
“similarity” between the parameterized descriptions of the arguments of
the different calls for the same functions. At the beginning, we are going
to pay attention only to the function call names, to be more precise ––
to the call names syntactically being the uppermost calls (w.r.t. the
composition structure) in each stack element. The following condition for
approximation of a loop in the meta-tree of all potential computations
was suggested by V. F. Turchin in Obninsk (1989,[22]).

Let each function call for F be attributed by the time (Ftime) the call
was created during development of the meta-graph. Given two stacks
labeled by the times - Previous and Current, we say that this pair indi-
cates a loop if the stacks can be represented in the form:
Previous = PrevTop; Context;
Current = CurrTop; Middle; Context;
where the bottom of the stacks is the length-most common part (maybe
which length is zero), i.e. this part nowise took part in the process de-
veloping of the function stack along the path from the previous node to



The Supercompiler Scp4: General Structure 467

the current, and the “tops” of the two stacks
( PrevTop = F1ptime1, ..., FNptimen

CurrTop = F1ctime1, ..., FNctimen ) coincide modulo the creation
times of the calls. The top PrevTop is called the entry point of the
loop. The body of the loop is defined by the path (from the previous
pivot node to the current), that accumulates the Middle of the stack.
The Context determines computations immediately after the loop.

The definition reflects an assumed development of the stack as follows
PrevTop; Middlen; Context if the Middle and PrevTop are considered
modulo the creation times of the calls. In this case, if “similarity” of the
considered nodes will be confirmed by other criteria (see below), then
the branches outgoing from the previous node are pruned and the task
described in the node is split into the subtasks corresponding to the loop
and the context.
Example 1: Consider a definition of the unary factorial.
$ENTRY IncFact {e.n = <Plus (I) (<Fact (e.n)>)>;}
Fact { () = I;

(e.n) = <Times (e.n) (<Fact (<Minus (e.n) (I)>)>)>; }
Times { (e.u) () = ;

(e.u) (I e.v) = <Plus (<Times (e.u) (e.v)>) (e.u)>; }
Plus { (e.u) () = e.u;

(e.u) (I e.v) = I <Plus (e.u) (e.v)>; }

Minus { (I e.u) (I e.v) = <Minus (e.u) (e.v)>;
(e.u) () = e.u; }

“Lazy” development of the stack along the main branch yields the follow-
ing sequence:
[1]: IncFact1;
[2]: Plus2;
[3]: Fact4; Plus3;
[4]: Times5; Plus3;
[5]: Fact7; Times6; Plus3;

...
Here the Obninsk condition indicates that the stack formed on the fifth
step is “similar” to the stack created on the third step. A hypothesis is
that the stack will further have the form Fact; Timesn; Plus3; , where
Fact; Timesn; is the body of the loop, while Plus3 represents compu-
tations immediately following the loop. Note the arguments of the calls
for Plus3, Plus2, Times5, Fact7 contain other calls.
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Definition 1: Let a finite alphabet A ::= { ai } be given. Let W stand
for the set of all finite words over A including the empty word. Let a
function G: A 7→ W and a word s ∈ W be given. Define a sequence
(possibly finite) stackn fixing the birth-times of the calls:
1. stack0 ::= (s,0)
2. defined stacki ::= (ai, t) ui, where ai ∈ A, t ∈ N and ui is the tail
of the sequence, then stacki+1 ::= Time(G(ai), MaxTime) ui, where
MaxTime is the maximum on the second components of the pairs from
stacki.
Time(a w, time) ::= (a,time+1) Time(w, time+1);
Time( , time) ::= ; ,where a ∈ A, w ∈W .
The sequence stackn is called the timed development of the stack (G,s).

Statement 1. (V. F. Turchin [22]) Any development of a timed
stack stackn is either finite or there exist natural numbers k , m such
that k > m and stackm = (a1, tm1) ...(ai, tmi) context

stackk = (a1, tk1) ...(ai, tki) middle context
where middle and context are sequences of the pairs of the form
(aj, tj), possibly having zero lengths.

Henceforth, the part of the stack (a1, tm1) ...(ai, tmi) respon-
sible for the entry point of the loop will be called prefix.

Every pivot node in the meta-tree of all possible computations has a
node - pro-image in the source graph. Every node in the input graph has
a unique name. Scp4 considers the set of the names FunctionNamend−id

stored in the nodes by the driving and the stack’s reconstruction (Sect.
6.1) as an alphabet examined by the Obninsk condition. The set of these
names is finite.

FunctionNamend−id completely specifies the structure of the envi-
ronment - the variables, which values determine evaluation of this call.
Therefore, we have:

Statement 2. Let (a1, tm1) ...(ai, tmi) and (a1, tk1) ...(ai,
tki) be the prefixes indicated by the Obninsk condition, then for every j
(1 6 j 6 i) the arities of the environments and the names of the envi-
ronment variables coincide.

After that, a simplification ordering condition specifies a “similarity”
relation on the parts of the parameterized environments (aj, tmj), (aj,
tkj), which provides “positive” information of data (Sect. 4). This re-
lation is a variant of a relation originating by Higman [4] and Kruskal
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[12] and is a specification of the following term relation. Let two terms
Previous and Current be written on a blackboard by a chalk. We say
the term Current is not less complex compared to the Previous iff the
Previous can be obtained from the Current by erasing some basic terms
and constructors (see also [20, 25]). If the set of the basic terms is rea-
sonable enough, then any infinite term sequence tn ∈ positive-pd has
a pair ti, tk such that k > i and tk is not less complex compared to ti

[4, 12].
Scp4 uses also other additional “similarity” conditions. Some of them

reflect technical details of the implementation, others were taken ad hoc
based on the experience of the authors.

Our approximation of the concept of the loop is the assumption that
this loop constructs the terms and constructors erased by us (see above).
Both prefixes are entry points of the loop: the previous is the first itera-
tion, the current is the second one.

To fold the path in the meta-tree, we have to reduce (by a substitution
of the parameters) the parameterized description of the environment of
the current prefix to the environment of the previous prefix. If there are
no such substitutions, then the descriptions of these two environments
are subjects for generalization. I.e. a new parameterized environment
is constructed such the both prefix environments can be reduced to the
new environment by some substitutions of the parameters. The previous
prefix is replaced with the generalized prefix.

After the generalization of the positive-pd parts, it is necessary to
generalize the negative-pd parts of the descriptions. The result of the
generalization has to be again in the negative-pd language. We refer
the reader to the sources of Scp4 [16] for the details.

7.2.2. The strategy for processing of the meta-tree. Generalization
processes the pivot nodes along the “path” from the current node to the
meta-tree root, i.e. in the opposite direction to the edge orientations
- from the right to the left. Let us formulate several properties of the
generalization tools.

Statement 1. Let Previous ∝ Current stand for for the Obninsk
relation for indicating the loop (Sect. 7.2.1). Given three timed parame-
terized stacks Stackt1 , Stackt2 , Stackt3 on the path from the meta-tree
root to the current node, where t1<t2<t3, Stackt1∝ Stackt3 and
Stackt2∝ Stackt3 . Then 1) Stackt1∝Stackt2 ; 2) the lengths of the pre-
fixes Prefixt1 , PrefixAt3 indicated by the relation Stackt1∝ Stackt3 are
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not grater than the lengths of the prefixes Prefixt2 , PrefixBt3 indicated
by the relation Stackt2∝ Stackt3 ; 3) the length of the context Contextt1

indicated by the relation Stackt1∝ Stackt3 is not grater than the length
of the context Contextt2 indicated by the relation Stackt2∝ Stackt3 .

Therefore, under the given strategy the Obninsk relation selects the
loop with the least length and the entry point in the loop is represented
by the largest function stack among the prefixes of the stacks being in
this relation with the current stack. That provides possibilities for opti-
mization of this composition (of the prefix and the context) inside this
loop. On the other hand, the largest context reflects the semantics of the
computations, which, are irrelevant to this loop and this context will be
unfolded-folded separately.

8. Unfolding

The abstract Refal-graph machine, immediately after the current
step, modifies the function stack - prepares its syntactical structure for
the next step. Choosing of the active function call during interpretation
is an analogue of unfolding.

The abstract unfolding: a) reconstructs the structures of the param-
eterized function stacks in the leaves of the driving cluster in accordance
with a strategy (see below); b) chooses (in the meta-tree) a leaf, which
stack will be transformed by the subsequent call for the driving. In our
transformer the strategy chooses the leaf of the top-most branch among
the branches having at least one function call on their ends. I.e. the
strategy is the depth-first strategy.

Recall that the stack extends from the right to the left. Another
strategy reconstructs the description of the parameterized stack. After
the driving, each element of the stack is represented by a parameterized
expression (roughly speaking). The following two strategies for develop-
ment of the stack are implemented: a) the lazy strategy corresponds to
the lazy (call by need) semantics of functional languages (the given stack
development during supercompilation does not contradict the Refal se-
mantics, because it can just extend the domain of the partial mapping);
b) the applicative strategy corresponds to the applicative semantics (call
by value). Constructors from the top level of the stack elements, i.e.
the constructors that are not pieces of the function call arguments, are
moved to the right side along the stack. The right-most stack element
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(the bottom) is a common context for all computations in the concrete
task and is an accumulator for the constructors.

Example 1: The stack
[[ A <G B <F e.1»←out.1; <H e.1 out.1>←out.2; , ]]
will be transformed by the lazy strategy to the form
[[ <G B <F e.1»←out.3; <H e.1 A out.3>←out.2; , ]],
while by the applicative strategy to
[[ <F e.1>←out.3; <G B out.3>←out.4; <H e.1 A out.4>←out.2; ,
]].

9. Global analysis

Suppose, a pivot node was declared as basic during the transforma-
tions and the sub-tree outgoing from the node is completely folded. We
refer to this node as the input point of the folded-component. An analysis
of global properties of this folded-component starts.

Three different kinds of components can appear in the process: 1)
self-sufficient, i.e. those of them which refer just to themselves; 2) compo-
nents that refer to themselves and to the components constructed before;
3) components that contain references to the basic nodes inside the part
of the tree on which folding has not been finished yet. This classifica-
tion is defined for a particular moment of the folding procedure, and it
depends on this algorithm.

Some properties of the components are more suitable to be analyzed
in terms of the Refal-graph language others - in terms of the Refal lan-
guage.

From the point of view of an input program to be transformed the
properties analyzed by Scp4 are quite trivial and rather uninteresting,
but the given subgraph-component was constructed automatically. This
is the result of specialization of the program and simplification of its
compositional structure. Any trivial transformations are very desirable
at this moment of supercompilation, because further transformations of
still unfolded parts of the tree of possible computations depend on their
results. The principal point is to discover an output format of the folded-
component; breaking up a task into subtasks during supercompilation
leads to the total loss of information about the images of the subtasks
(Sect. 7). An inductive output format is a common kind of the struc-
ture of the subtask image. After the global analysis this information
is propagated through connections between the tasks and is used later.
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The global analysis and transformations on the basis of the properties
found are logically separated one from the others. The transformations
extend the domain of the partial mapping defined by the Scp4 input and
are able to decrease significantly time complexity of the programs to be
transformed. The details of the global transformation can be found in
[13,14,16].

9.1. Analysis in terms of the Refal-graphs. The following prop-
erties are analyzed in terms of the Refal-graph language. A sub-graph
(a folded component) is said to be empty iff no leaves of the sub-graph
can be reached on any input data. The syntactical emptiness of the sub-
graph is analyzed and the edges incoming to the empty sub-graph calls
are pruned in the meta-graph. Hence, new uniformly interpreted steps
may appear in the meta-graph. Let the image of a partial function be
the only point. In this case, we can replace each call of the function with
its value. Such syntactical constant sub-graphs are looked for.

As we mentioned above the output formats of the folded components
are derived. Derivation of the output formats is critical when the length
of the function stack of a program to be transformed is not uniformly
bounded on the input data. Without such derivation interesting trans-
formations are not happening. The output formats and the function
(sub-graph) calls are painted in two colors. An output format is declared
inductive when it has been just constructed during transformations (the
term takes its origin from the method that constructs the output formats:
an inductive hypothesis and its automatic proof); a graph call is declared
inductive immediately after use (creation) of its real output parameters
via the inductive output format of the graph. The tool creating the in-
ductive hypothesis is the algorithm for generalization of Refal-expressions
defining the output structures on each branch of the sub-graph [13].
Example 1: Let the following Refal program be an input to Scp4.
$ENTRY Go { e.n = <Plus (I I I) (e.n)>; }, where the Plus is de-
fined in Sect. 7.2.1. The definition (viewed separately from the context of
the function call) does not give any information about the output struc-
ture of Plus. At the stage of constructing of its output format, after
the specialization w.r.t. the call context, the folded component looks as
follows.
(Input-Format e.1←e.1;)
F7 {
+[1] e.1→[]; I I I←e.out;
+[2] e.1→I e.2; {e.2←e.1;} <F7 e.1> {e.out←e.3;}; I e.3←e.out;
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} (Output-Format e.out←e.out;)
It is possible to construct a non-trivial output format. Our algorithm con-
structs the inductive output format I e.4, though a more precise analysis
is able to give the following perfect variant I I I e.4. The description
of the subgraph F7 is made more precise (the double brackets are the
inductive colors):
(Input-Format e.1←e.1;)
F7 {
+ e.1→I e.2;{e.2←e.1;} «F7 e.1»{{I e.out1←e.3;}}; I e.3←e.out;
+ e.1→[]; I I I←e.out;
} (Inductive-Output-Format I e.out1←e.out;)

9.2. Analysis in terms of the Refal Language. This analysis
allows to transform some simple recursive definitions to one-step pro-
grams. Here we just give two examples and refer the reader to [14].
Example 1: (A syntactical identity.)
$ENTRY Go { e.string = <F e.string>; }

F { s.1 = s.1;

s.1 e.string = <F s.1> <F <F e.string>>;

= ; }

The residual program: $ENTRY Go { e.input = e.input; } This exam-
ple demonstrates that our transformation is able to decrease time com-
plexity from O(2n) to O(1). The domain of the partial mapping was
extended.
Example 2: The following entry point to the function Repl defined in
Sect. 3
$ENTRY Go { s.a e.xs = <Repl s.a s.a (e.xs)>; }, after
specialization w.r.t. the call context, will be transformed to the following
projection $ENTRY Go { s.a e.xs = e.xs; }

9.3. Use of the global analysis results, repeated specializa-
tion. If the results of the global analysis allow us to replace a folded
component with a one-step program, then its input point is replaced
with a corresponding passive node.

Consider the main case. An inductive output format of a recursive
folded component P was constructed as a result of the analysis: the struc-
tures of the output environment (of the considered sub-graph P) are spec-
ified. We again are at the starting position to specialize the sub-graph
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P; because it may contain edge-references to itself and,hence,the informa-
tion about the output structures was not used during the construction of
P.

Repeated specialization of the sub-graph specializes the folded com-
ponent w.r.t. the structures of the inductive output formats of the sub-
graphs Fi, which the component refers to (i.e. there exists an edge coming
out of a node of the component and coming in the input point of a Fi).
Example 1: Consider a modification of Example 1 from Sect. 7.2.1. We
change only the entry point and the definition of Fact.
$ENTRY Go { e.n = <Fact (e.n)>; }
Fact { () = (I);

(e.n) = (<Times (e.n) <Fact (<Minus (e.n) (I)>)»); }
The sub-graph corresponding to this task immediately after the global
analysis can be found in Sect. 5.2. (A reference F16 to another compo-
nent is not relevant and we skip it.) In this example, F7 is specialized
w.r.t. the structures of the output formats of F7 and F16. If an output
format of a sub-graph Fi has not been constructed yet, then during the
specialization the output format is considered in general situation (no
information about its structure).

This transformation does not make unfolding: the sub-graph is just
cleaned. Even though the specialization deals with the tools of the driving
algorithm.

The global analysis performed not only for the folded components but
also for every completely folded task. Global information is distributed
from one task to another: through the links between them and through
the shared parameters.

10. Dead code analysis

Dead code analysis post-processes the “residual” program constructed
by the main phase of Scp4. The analysis is a kind of a global dependence
analysis that aims to compute the minimum amount of information suffi-
cient for producing certain results. The goal is to eliminate the input and
output formal parameters (of the folded components) and the function
calls, which values do not influence the values of the partial mapping
defined by the Scp4 input.
Example 1: The following program
$ENTRY Go { e.1 = <F (e.1) () e.1>; }
F { (e.0) (e.2) A e.1 = <F (<F (e.0) (e.2 C) e.1>) (e.2 B) e.1>;

(e.0) (e.2) = e.2; }
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will be cleaned to
$ENTRY Go { e.1 = <F45 (e.1)>; }
F45 { (A e.1) e.2 = <F45 (e.1) e.2 B>;

() e.2 = e.2; }

This post-processing is quite critical, because the redundant formal
parameters not only are brought by the source program but and may be
generated by the algorithm of generalization.

11. Experiments

This section gives several references and short examples of transfor-
mations by Scp4. See Appendix A for the examples of specialization of
an interpreter w.r.t the examples given in this paper. A lot of examples
can be found in the distributive of Scp4 [16].
Example 1: A. V. Korlyukov describes several interesting experiments
with Scp4 in [6–10]. For instance, he demonstrates using the supercom-
piler as a “theorem prover” [8, 15].
Example 2: We refer the reader to [10], where the experiments on super-
compilation of a double interpretation are reported. The supercompiler
specializes an XSLT-interpreter written in Refal w.r.t. a Turing Machine
interpreter written in XSLT. The observed running time speedup is en-
tered in the title of the report. A demonstration of the experiments is
available for immediate download [10].
Example 3: Consider Plus from Example 1 in Sect. 7.2.1. Specialization
of this function w.r.t. the second argument is not a surprise. Let us spe-
cialize the function w.r.t. the first argument by the supercompiler. We
input the entry point $ENTRY Go {(e.n)(e.m) = <Plus (I e.n) (e.m)>;}
to Scp4. The residual program looks as follows.
$ENTRY Go { (e.n) (e.m) = I <F7 (e.n) e.m>; }
F7 { (e.1) = e.1;

(e.1) I e.2 = I <F7 (e.1) e.2>; }
Example 4: Let the entry point for Minus (Example 1,Sect. 7.2.1) be
$ENTRY Go{(e.n)(e.m) = <Minus(e.n)(I e.m)>;} The Scp4’s output:
$ENTRY Go { (I e.n) (e.m) = <F6 (e.n) e.m>; }
F6 { (I e.1) I e.2 = <F6 (e.1) e.2>;

(e.1) = e.1; }
Example 5: This example demonstrates transformation of a recursive
program to the tail recursive variant. The entry point <Times (e.n)
(e.m)> to Times defined in Sect. 7.2.1 (Example 1) is input to Scp4.
The residual program:
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$ENTRY Go { (e.n) (e.m) = <F5 (e.n) e.m>; }
F5 { (e.1) = ;

(e.1) I e.2 = <F24 (e.1) (e.2) e.1>; }
F24 { (e.5) (e.6) = <F5 (e.5) e.6>;

(e.5) (e.6) I e.7 = I <F24 (e.5) (e.6) e.7>; }
Example 6:
Elimination of intermediate data. The parameterized entry point:
$ENTRY Go{ s.a s.b s.c e.inp = <Repl(s.b s.c) <Repl (s.a s.b)e.inp»;}
,where Repl was defined in Sect. 3. The residual program:
$ENTRY Go {s.a s.b s.c e.inp = <F8 (e.inp)s.a s.b s.c>;}
F8 { () s.1 s.2 s.3 = ;
(s.1 e.4) s.1 s.2 s.3 = s.3 <F8 (e.4) s.1 s.2 s.3>;
(s.2 e.4) s.1 s.2 s.3 = s.3 <F8 (e.4) s.1 s.2 s.3>;
(s.6 e.4) s.1 s.2 s.3 = s.6 <F8 (e.4) s.1 s.2 s.3>;
((e.7) e.4) s.1 s.2 s.3

= (<F8 (e.7) s.1 s.2 s.3>) <F8 (e.4) s.1 s.2 s.3>; }
See also [13] and Appendix A for various examples.

12. Conclusions

We have described the general structure of an experimental program
specializer Scp4 based on the supercompilation technique. The input
language of the transformer is a functional programming language Refal-
5. We have shown the results of a number of examples transformed by
Scp4 and gave the references to the reports, where a lot of other examples
can be found.

Every concrete tool from Scp4 makes a simplest elementary trans-
formation. A result of the composition of these transformations often
is interesting. Some transformations do not depend one on another and
can be done in an order, which is different from the one used by Scp4.
The transformations do not commutate. That means repeated use of the
supercompiler can lead to further optimizations.

Transformation on the basis of the results of the global analysis (and
the lazy driving) can decrease time complexity of programs to be trans-
formed.

Non-trivial derivation of the output formats substantially depends on
the existence of the references to other components in the local folded-
component, such that their output formats are still not created to the
given moment. The experiments made by the author show that without
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derivation of the output formats interesting transformations do not hap-
pen, when the length of the function stack of a program to be transformed
is not uniformly bounded on input data.

The termination property of the supercompiler Scp4 depends on the
driving strategy chosen by the user. The most conservative strategy
causes termination. If another strategy is chosen, then Scp4 may loop
forever on some inputs, but will yield more efficient residual programs
when it will terminate.

The residual folded-components are often tail recursive. That and
some other reasons indicate that, from the practical point of view, the
direct interpretation of the Refal-graph language makes meaningful in-
terest (we would like to point to the work by A. P. Konyshev [11]).
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Appendix A. Specialization of an interpreter

The purpose of this section is to give some additional examples of
transformations by the supercompiler Scp4.

We are going to specialize an interpreter w.r.t. given programs under
the applicative strategy of the unfolding (Sect. 8). So firstly we define an
algorithmically full subset of the Refal language (see Sect. 3 and [23]),
called strict Refal. The subset will be interpreted. The data is the Refal
data. The program syntax is defined by the following grammar.

Program ::= $ENTRY definition+
definition ::= function-name { sentence;+ }
sentence ::= pattern = expr
expr ::= empty | term expr1 | function-call expr1

function-call ::= <function-name expr>
pattern ::= empty | term pattern1

term ::= SYMBOL | var | (expr)
var ::= e.name | t.name | s.name
empty ::= /* nihil */

Syntax of the strict Refal language.
There are two additional restrictions: 1) the set of the variables of the
right side of a sentence is a subset of the variable set of the left side of
the sentence; 2) two e-variables are not allowed on the same parenthesis
structure in the patterns. (For example, the pattern (e.1) e.2 (e.3)
is allowed, while (e.1 A e.2) e.3 is not.)

The given-below interpreter written in the strict Refal is
Interpreter: Program × Data 7→ Data⊥,

where Program stands for the set of the strict Refal programs, and Data
stands for the set of the Refal data. We use the following mapping for
representing the programs and the data with the Refal data. Denote the
mapping by underlining.
Program = ( definition+ )
F { sentence;+ } = (F sentence;+ )
pattern = expr; = (( pattern )’=’( expr ))
expr1 expr2 = expr1 expr2

( expr ) = (’*’ expr )
<F expr> = (Call F expr )
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e.name = (Var ’e’ name)
t.name = (Var ’t’ name)
s.name = (Var ’s’ name)
SYMBOL = SYMBOL

A pattern is the partial case of an expression. The empty expression is
encoded by itself. Below the asterisk on the first position in a line stands
for the one-line comments.
$ENTRY Go {
t.Program e.data = <Interpreter (Call Go e.data) t.Program>;
}
Interpreter {
(Call s.F e.d) t.P = <Eval <EvalCall s.F (e.d) t.P> t.P>;
}
* <Eval (e.env) (e.expr) t.Program> => e.data
Eval {
(e.env) ((Call s.F e.expr1) e.expr) t.P

= <Eval <EvalCall s.F (<Eval (e.env) (e.expr1) t.P>) t.P> t.P>
<Eval (e.env) (e.expr) t.P>;

(e.env) ((Var e.var) e.expr) t.P
= <Subst (e.env) (Var e.var)> <Eval (e.env) (e.expr) t.P>;

(e.env) ((’*’ e.expr1) e.expr) t.P
= (’*’ <Eval (e.env) (e.expr1) t.P>) <Eval (e.env) (e.expr) t.P>;

(e.env) (s.x e.expr) t.P = s.x <Eval (e.env) (e.expr) t.P>;
(e.env) () t.P = ;
}
EvalCall { s.F (e.d) t.P =
<Matching False (((False)’=’(False)) <LookFor s.F t.P>) (e.d)>;}

* <Matching t.boolen (e.pattern)’=’(e.data)> => (e.env) (e.expr)
* , where t.boolen ::= (e.env) | False
Matching {
False (t.sent ((e.p)’=’(e.expr)) e.def) (e.d) =

<Matching <RigitMatch (e.p)’=’(e.d) ()>
(((e.p)’=’(e.expr)) e.def) (e.d)>;

(e.env) (((e.p)’=’(e.expr)) e.def) (e.d) = (e.env) (e.expr);
}
* <RigitMatch (e.patt)’=’(e.data) (e.env)> => (e.env1) | False
RigitMatch {
((Var ’e’ s.n))’=’(e.s) (e.env)
= <RigitMatch ()’=’() <PutVar ((Var ’e’ s.n) e.s) (e.env)»;

((Var ’s’ s.n) e.p)’=’(s.1 e.s) (e.env)
= <RigitMatch (e.p)’=’(e.s) <PutVar ((Var ’s’ s.n) s.1) (e.env)»;

((Var ’t’ s.n) e.p)’=’(t.1 e.s) (e.env)
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= <RigitMatch (e.p)’=’(e.s) <PutVar ((Var ’t’ s.n) t.1) (e.env)»;
((’*’ e.p1) e.p)’=’((’*’ e.1) e.s) (e.env)
= <RigitMatch (e.p)’=’(e.s) <RigitMatch (e.p1)’=’(e.1) (e.env)»;

(s.1 e.p)’=’(s.1 e.s) (e.env)
= <RigitMatch (e.p)’=’(e.s) (e.env)>;

((Var ’e’ s.n) e.p (Var ’s’ s.n1))’=’(e.s s.1) (e.env)
= <RigitMatch ((Var ’e’ s.n) e.p)’=’(e.s)

<PutVar ((Var ’s’ s.n1) s.1) (e.env)»;
((Var ’e’ s.n) e.p (Var ’t’ s.n1))’=’(e.s t.1) (e.env)

= <RigitMatch ((Var ’e’ s.n) e.p)’=’(e.s)
<PutVar ((Var ’t’ s.n1) t.1) (e.env)»;

((Var ’e’ s.n) e.p (’*’ e.p1))’=’(e.s (’*’ e.1)) (e.env)
= <RigitMatch (e.p1)’=’(e.1)
<RigitMatch ((Var ’e’ s.n) e.p)’=’(e.s) (e.env)»;

((Var ’e’ s.n) e.p s.1)’=’(e.s s.1) (e.env)
= <RigitMatch ((Var ’e’ s.n) e.p)’=’(e.s) (e.env)>;

()’=’() (e.env) = (e.env);
(e.p)’=’(e.s) e.False = False;
}
* <PutVar (e.assignment) (e.env) > => t.boolean
PutVar {
t.a (e.env) = <CheckPut <PutVar1 t.a (e.env)»; }

PutVar1 {
((Var s.t s.n) e.val) (((Var s.t s.n) e.val1) e.env)

= ((Var s.t s.n) e.val1) e.env <Eq (e.val) (e.val1)>;
t.assign (t.assign1 e.env)

= t.assign1 <PutVar1 t.assign (e.env)>;
t.assign () = t.assign True;
}
CheckPut {

e.env True = (e.env);
e.trash False = False;
}
* <Eq (e.expression1) (e.expression2)> => s.boolean
* , where s.boolean ::= True | False
Eq {
(s.1 e.xpr1) (s.1 e.xpr2) = <Eq (e.xpr1) (e.xpr2)>;
((’*’ e.1) e.xpr1) ((’*’ e.2) e.xpr2)

= <Eq (e.1 e.xpr1) (e.2 e.xpr2)>;
() () = True;
(e.xpr1) (e.xpr2) = False;
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}
* <LookFor s.Function-name (e.Program)> => e.def
LookFor {
s.F ((s.F e.def) e.P) = e.def;
s.F ((s.F1 e.def) e.P) = <LookFor s.F (e.P)>;
}
* <Subst (e.environment) t.variable> => e.data
Subst {
(((Var s.t s.n) e.val) e.env) (Var s.t s.n) = e.val;
(t.assign e.env) t.var = <Subst (e.env) t.var>;
}

All parameterized entry points of the below-given tasks to be trans-
formed do not have parameters describing the restriction to the image of
the encoding. So the supercompiler solves more general tasks than it is
necessary for the first Futamura projection.
Example 1: We input the following parameterized entry point to Scp4:
<Go Go-Plus e.data>, where Go-Plus is the program
$ENTRY Go {(e.1) (e.2) = <Plus (e.1) (e.2)>;}
, and Plus was defined in Sect. 7.2.1. The residual program is
$ENTRY Go { (’*’ e.1) (’*’ e.2) = e.2 e.1;}

The result is perfect. There are no loops. The function domain was
extended.
Example 2: The input to Scp4 is <Go Go-Repl e.data>, where Go-Repl
is
$ENTRY Go { (s.a e.b) e.inp = <Repl (s.a e.b) e.inp>; },
and Repl was defined in Sect. 3. The residual program looks as follows.
$ENTRY Go { (’*’ s.a e.b) e.inp = <F64 (e.inp) (e.b) s.a>; }
* InputFormat: <F64 (e.4) (e.1) s.3 >
F64 {
() (e.1) s.3 = ;
(s.9 e.4) (e.1) s.9 = e.1 <F64 (e.4) (e.1) s.9>;
(s.9 e.4) (e.1) s.3 = s.9 <F64 (e.4) (e.1) s.3>;
((’*’ e.6) e.4) (e.1) s.3

= (’*’ <F64 (e.6) (e.1) s.3>) <F64 (e.4) (e.1) s.3>;
}

The interpretation overhead was completely removed.
Example 3: The parameterized entry point is
<Go Repl1 e.inp>,
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where Repl1 is the function Go defined in Sect. 3. The residual program:

$ENTRY Go { e.inp = <F42 e.inp>; }

* InputFormat: <F42 e.1>

F42 {

= ;

Lisp e.1 = Refal <F42 e.1>;

s.2 e.1 = s.2 <F42 e.1>;

(’*’ e.2) e.1 = (’*’ <F42 e.2>) <F42 e.1>; }

The interpretation overhead was completely removed. Moreover, the in-
terpreted program was specialized.
Example 4: The input to Scp4 is <Go Go-Times e.data>, where
Go-Times is the program

$ENTRY Go {(e.1) (e.2) = <Times (e.1) (e.2)>;},

and Times was defined in Sect. 7.2.1. The residual program is the fol-
lowing.

$ENTRY Go {(’*’ e.1) (’*’ e.2) = <F56 (e.1) e.2>;}

* InputFormat: <F56 (e.1) e.2>

F56 { (e.1) = ;

(e.1) I e.2 = e.1 <F56 (e.1) e.2>; }

There is no interpretation overhead. Moreover, the residual program
does not have a loop corresponding to Plus from the original program.
Time complexity was decreased.
Example 5: The parameterized entry point is <Go Fact1 e.n>, where
Fact1 is the function Go defined in Sect. 9.3 (Example 1). The residual
program:

$ENTRY Go { e.n = (’*’ <F30 e.n>); }

* InputFormat: <F533 (e.1) (e.4) e.5>

F533 { (e.1) () = ;

(e.1) () I e.5 = I e.1 <F533 (e.1) () e.5>;

}

* InputFormat: <F245 (e.1) e.4>

F245 { (e.1) = ;

(e.1) I e.4 = I I e.1 <F245 (e.1) e. 4>;

}
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* InputFormat: <F122 e.1>

F122 { I e.1 = <F245 (e.1) <F122 e.1>>;

e.1 = <F533 (e.1) () <F30 e.1>>;

}

* InputFormat: <F30 e.1>

F30 { = I ;

I e.1 = <F122 e.1>; }

The residual algorithm does not have a loop coming out the function Plus.
The first sentence of F122 unwraps the function stack according to the
original definition of Fact. The exit from the recursion looks strange and
can be improved. We input the result program to Scp4. The repeated
supercompilation just renames these functions and cleans the function
F533 a little:

* InputFormat: <F33 (e.1) e.2>

F33 { (e.1) = ;

(e.1) I e.2 = I e.1 <F33 (e.1) e.2>; }

Thus, the exit from the recursion is still strange.
Example 6: We input the following parameterized entry point to Scp4:
<Go F1 e.1>, where F1 is the function Go defined in Sect. 10 (Example
1). The residual program is

$ENTRY Go { e.1 = <F100 () e.1>; }

* InputFormat: <F100 (e.8) e.9>

F100 { (e.8) A e.9 = <F100 (e.8 B) e.9>;

(e.8) = e.8; }

Comments are unnecessary.
The following table shows the times taken by the supercompiler Scp4

for producing the residual programs given in this section. All the exper-
iments were performed under the operating system Microsoft Windows
2000 with Intel Pentium-4 CPU (R), 262 144 KB RAM, 1.5 GHz.

The supercompile times.
Example 1 2 3 4 5 6
Time in sec. 0.81 3.28 2.73 1.69 15.89 1.67

Исследовательский центр мультипроцессорных систем ИПС РАН
и Уханьский университет, г. Ухань, Хубей, Китай



The Supercompiler Scp4: General Structure 485

А. П. Немытых. Суперкомпилятор SCP4: общая структура. (Англ.)

Аннотация. На основе технологии суреркомпиляции автор реализовал преобразова-
тель фунуциональных программ Scp4. Scp4 реализован на функциональном языке про-
граммирования Рефал-5. Этот же язык является и входным языком для Scp4. В ста-
тье мы кратко рассматриваем общую структуру суперкомпилятора Scp4 и показываем
несколько примеров преобразований посредством Scp4. Библ. 28 наим.
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