P

Russian Academy of Sciences
rogram. Systems Institute

Research Center for Multiprocessor Systems

Programming Automation Laborato
The Refal Plus Programming System

1. Implementation of the Refal plus programming language
based on array list representation.

Array representation of Refal expressions has a number of
advantages including effective evaluation of the Refal
expression length during the program execution process and
construction of subexpression by its length and position in the
Refal expression. Effective implementation of these operations
permits to develop and use a new approach to an effective
implementation of syntax identification in the Refal
language.

2. Strict compilation of Refal programs into an imperative
language. The scheme of a strict compilation of a Refal
program into an abstract imperative language which could be
easily transformed into any target platform by using the back-
end module has been implemented.

3. Openness, flexibility, and considerable modularity. The
system is implemented as a number of separate modules with
clearly described interfaces. The modules are available in
source codes. The compiler of the system is written on Refal
plus; variants of runtime support libraries for different platforms
are written on high-level languages (C++, Java, T++).
Moreover, this approach provides a high level of system
portability.

4. Support of possible extensions. The module structure of
the system ensures easy functionality changing without
modification of the whole system and/or a considerable part of
its code.

Consequently, we have a possibility:

nto add different (and optimizing) transformations of Refal
programs in abstract syntax format (AS2AS-transformers);

nto add different (and optimizing) transformations of the result
of compilation in abstract imperative language format (Optim
modules);

nto include different Refal dialects into the system (those
which exist and will appear in the future) using the possibility
to add different front-end modules (Lexer&Parser);

nto support different target architectures and platforms in the
system, implement different versions of back-end modules
and corresponding runtime support libraries and, due to this,
to implement the system on the base of both traditional
imperative languages (C++, Java, C#) and the languages
supporting parallel execution of programs in multiprocessor
systems (T++, OpenTS).

ADDRESS

Research Center for
Multiprocessor Systems
Program Systems Institute

Russian Academy of Sciences

In order to implement the described approach the compilation
process of a Refal Plus program is divided into four main parts:

|

! I

! |

code : code |

| |
C++ > yCH ! T++
RSL ! yRSLE g . RSL

1_ I
e- | |
coae

v The Lexer&Parser module tranforms a Refal Plus program
into the intermediate Refal- oriented language called
Abstract Syntax (AS-code). Abstract syntax has tools for an
appropriate representation of particular features of all Refal
dialects.

e The compiler module transforms AS-code into programs on
an abstract imperative language.

o The converter module generates output text on an
imperative language.

n Generation of the executable module on the basis of a
corresponding runtime support library.

Example of translation of a Refal Plus
program into C++

Refal Plus program C++ program
#include <rf core.hh>

#include <refal/StdIO.hh>
namespace refal

{

using namespace rfrt;

namespace hello

{

static const Expr

_c _O0=Char: :create expr('Hello!');
RF FUNC (Main, (), (RF _RES v resl))

SUse StdIO
Main=<PrintLN 'Hello!'>;

RF CALL (StdIO::PrintLN, (c 0),());
_V_resl=empty;
RF _END

}
rfrt: :Entry rf entry (hello::Main);

}

I—

RC]) IS

Pereslavl-Zalessky M

Yaroslavl Region

Russia, 152020
Tel/Fax: +7 (08535) 98064

E-mail: abram@botik.ru

Web-site: http://www.botik.ru/PSI/RCMS

	Page 1

