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Abstract. T-system is a tool for parallel computing developed at the
PSI RAS. The most recent implementation is available on both Linux
and Windows platforms. The paper is dedicated to one of important
T-system aspects — ability to change parallelism granule size at run-
time. The technique is available, primarily, for recursive programs, but
it’s possible to extent it to non-recursive ones as well. In the latter case,
we employ C++ template“traits”for program transformation. The tech-
nique is shown to reduce overhead incurred by runtime support library
dramatically.
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1 Introduction

The building of snow castle is a favorite winter-time game of Russian children.
One has to use large snowballs to build one (or two, or three) walls and, may be,
a tower. Then the castle is ready to protect it’s builders from others in snowball
game. If weather is appropriate (just below zero Celsius plus a major snowfall),
snow castles mushroom along recreation areas in residential city blocks. One,
who ever seen a snow castle know, that it’s constructed of large snowballs, not
small ones, the size is to be like ones to build a snowman, or even larger. It’s
just too boring to build snow castle out of small snowballs, while small ones can
be used to fill gaps between major ones, level walls and correct imperfectness.
And it’s not possible to build a snow castle treating snowflakes individually.

As well, the proper choice of granule size is very important for the parallel
computation to be effective. If the granules are too large, there may be not
enough granules to load all available CPUs. With large granules the cost of
scheduling error is larger too: cohesion, caused by assigning tasks to wrong CPU,
will last longer. At the same time, if granules are too small, the overhead incurred
by runtime system may be too large. In this paper we describe the granule size
control techniques, applicable for the context of the T-system approach. In T-
system, a potential granule is called“T-Function” and is, actually, a C-functions
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that can be computed in parallel. That creates a possible conflict of goals: the
“functions” in C/C++ program are to structure source code and make program
easier to read, while in T-system they serve as granules of parallelism, which size
should be large enough to pay back runtime system overhead. So, the dynamic
granules size — aggregation of multiple function calls in single granule — may
be very important to improve ease of parallel programming with the T-system.

2 Related work

The ability to dynamically adjust size and number of parallelism granules can
be enabled by either well-defined program structure or rigorous approach, based
on functional programming and graph reduction. The Open MP [1] may be con-
sidered as the most widely used implementation of the first approach: number
of threads created is in particular section is defined equal to number of CPUs
available. However, Open MP is mostly applied to loop parallelization, when
loop iterations have approximately equal CPU instructions. In more sophis-
ticated cases, graph partitioning is widely used in high-performance scientific
calculations involving meshes [2].

Much more general approaches exist in the realm of parallel functional pro-
gramming. “Task inlining”[3], “lazy task creation”[4] and “leapfrogging”[5] has
been devised almost two decades ago for Mul-T [3] and Multilisp[6]. In princi-
ple, all these techniques are applicable in context of any futures-based system,
like it has been recently shown for Java-based system in [7]. A lot of work has
been done on granularity control in Glasgow Parallel Haskell both in terms of
CPU and memory resources [8, 9]. However, the application of these approaches
in high-performance computing requires very tight limits on overhead, added
by the mechanism. For the parallel programming environment to be useful, it
should not only provide good speedup when running parallel programs, but allow
low-level optimization as well. It’s well known, that good optimizing compiler
may improve speed of application by 100-300% and this requires only applying
some optimization switches during compilation. For the majority of platforms,
good optimizing compilers are available for C/C++ and Fortran, but not other
programming languages. It may also important to allow compiler apply loop
optimization techniques, like loop unrolling, vectorization, skewing etc [10], to
load CPU pipelines and multiple execution units. The T-system design addresses
these issues: we use C++ as a basic language, and allow low-level optimization in
parallelism granules, at the same time, C++ inlining, in principle, should allow
compiler to optimize loops including “aggregated” granules (see below).

In this paper we focus on implementation of granules aggregation in the con-
text of T-system [11]. T-system provides programming model, which extends
C++ language to express parallelism, and runtime support library to enable
program execution on multi-cores, SMPs, computational clusters. The T-system
enables writing much more compact programs model than traditional Message-
passing interface (MPI) libraries. There are many C++ extensions available,
designed to provide high-level programming tools [12]. It’s interesting to note,
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that even original C++ design goals was to support parallelism, but it has been
decided later to rely on libraries with that aspect [13]. Rather novel approach re-
lies upon C++ templates to “extend” C++ language for parallelism [14–16]. Due
to size limitations of this manuscript, we would like to refrain from comprehen-
sive overview of C++ language extensions. However, we must notice distinctive
features of T-system approach:

– “Functional-based” approach to parallelisation (see below)
– Mutliple assigment support for global variables (in T++ language, see below)
– Custom ligtweight thread library (in Open TS)
– Distributed garbage collector

The ability to aggregate granules, specified by a programmer is a distinctive
feature as well. Combined with the availability on both Windows and Linux
Platform makes T-system convenient tool to a wide community of potential
users.

3 OpenTS: T-system implementation

Open TS is the most recent full-scale implementation of T-system approach
[11]. OpenTS provides a T++ — a language for parallel programming, which is
a seamless extension of C++ language with only 7 keywords:

– tfun — a function attribute which should be placed just before the function
declaration. A function with the “tfun” attribute is named “T-function”,
and runtime support system can compute such functions is parallel — in
separate threads of execution.

– tval — a variable type attribute which enables variables to contain a non-
ready value. The variable can be cast to the “original” C++-type variable,
which makes the thread of execution suspend until the value becomes ready.

– tptr — a T++ analogue of C++ pointers which can hold references to a
non-ready value.

– tout — a function parameter attribute used to specify parameters whose
values are produced by the function. This is a T++ analog of the “by-
reference” parameter passing in C++.

– tdrop — a T++ -specific macro which makes a variable value ready. It may
be very helpful in optimization when it’s necessary to make non-ready values
ready before the producer function finishes.

– tct — an explicit T-context specification. This keyword is used for specifi-
cation of additional attributes of T-entities.

Generally, Open C++ [17] reflection is used for conversion of the T++ pro-
grams to C++ with calls to Open TS runtime support library. The simplest
sample program — Fibonacci numbers calculation is presented below.

tfun int fib(int n)
{
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if (n<2) return 1;
return (fib(n-1)+fib(n-2));

}
tfun int main (int argc, char *argv[])
{

int n = atoi(argv[1]);
printf("Fibonacci %d is %d\n",n,(int)fib(n));
return 0;

}

Casting (int)fib(n) is necessary to make main thread to wait for other threads
to complete. Open TS runtime support library relies on MPI for communica-
tion in cluster environment, while addtional options are available (PVM, and
TCP/IP when MPI is not applicable). Open TS features custom lightweight
thread library, which is capable to make up to millions of context switches on
a modest CPU. Another important Open TS capability is automatic garbage
collection of non-ready values. By the end of 2006, the Windows port has been
finished. The “cross-platform” version is available for download at URL http:
//www.opents.net.

4 Granule aggregation in recursive programs

Sometimes, even bantamweight threads are too heavy: the program may be most
naturally expressed in terms of functions which take only few CPU instructions
to compute. The Fibonacci example above is program of that kind: most of
CPU time is spent on thread and non-ready values management by the runtime
system, not on summation of integers. One may require programmer to coarsen
parallelism grains supplied to system — the simplest solution. Consider the
following modification of original Fibonacci code:

int cfib (int n) {
return n < 2 ? n : cfib(n-1) + cfib(n-2);

}

tfun int fib (unsigned n)
{
if (n < 32) {
return cfib(n);

} else {
return fib(n-1) + fib(n-2);

}
}

tfun int main (int argc, char* argv[])
{
int n;
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if (argc < 2) {
fprintf(stderr,"Usage: %s <number>\n", argv[0]);
return -1;

}
n = atoi(argv[1]);
printf("fib(%d) = %d\n", n, (int)fib(n));
return 0;

}

The whole source is obscured a bit, moreover, the summation is replicated
in two pieces of program — making in harder to support. The alternative for
OpenTS is an implementation of technique, similar to “inline” of MultiLisp [6].
In that case, when a user program is calling a T-function “fib”, runtime system
may decide don’t create any new T-threads, but, instead, evaluate a function,
calling it’s as ordinary C-function. That reduces parallelism: the runtime system
will not be able to make some threads run in parallel. At the same time, it
removes much overhead from runtime execution, since there is no need to create
extra task object, schedule it and so forth. The benefit in terms of execution
time reduction on one CPU is observable for Fibonacci:

Table 1. Exectuion times for calculating 41-st Fibonacci number

Program Number of threads Execution time

Fib(41) 535828592 7108.952 sec
Fib(41)-aggregate 8192 5.603 sec

Fib-cilk-5.4.3 n/a 19.7 sec

Here and below, measurements hes been done on dual Athlon MP 1800+
system with 1Gbyte of RAM, only one CPU was used. Program has been built
with GNU C++ compiler version 3.2.2 and -O3 optimization flag. Here we ap-
plied a simple heuristic: calls, with recursion level deeper than the threshold
(namely, 17), are implemented as C-call, not thread-creating calls. For compar-
ison, we present also running time for calculation of the 41-st Fibonacci num-
ber with Cilk version 5.4.3, which is approximately 19 seconds. The Cilk [20]
is a multi-threading programming environment for symmetric multi-processors
(SMPs) and multi-core processors, which won HPC Challenge class 2 (most pro-
ductivity) [21] award on Supercomputing conference [22] in the year 2006.

The recurtion depth heuristic can be applied for a more sophisticated pro-
gram: calculating the π number with the numerical integration method (it’s
concept similar to sum-tree test of [4]):

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
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tfun double isum(double begin,
double finish,
double d) {

double dl = finish - begin;
double mid = (begin + finish) / 2;
if (fabs(dl) > d)

return isum(begin, mid, d) +
isum(mid, finish, d);

return (double)f(mid) * dl;
}
tfun double f(double x) {

return 4/(1+x*x);
}
tfun int main(int argc, char* argv[ ]) {

unsigned long h;
double a, b, d, sum;

if (argc < 2) {return 0;}
a = 0; b = 1; h = atol(argv[1]);
d = fabs(b - a) / h;
sum = isum(a, b, d);
printf("PI is approximately %15.15lf\n", sum);
return 0;

}

One may notice, that only minor changes were necessary to make this program to
run in parallel with the Open TS. Without granules aggregation, the overhead,
introduced by the T-system would be very large, comparing it with few CPU
instructions, which are necessary to calculate the “isum” function. To make this
program efficient in that case, it would be necessary to create a loop inside the
“isum” function, calculating the “f” multiple times. The T-system runtime with
support of recursive granule aggregation is much more forgiving: it even allows
placing “tfun” keyword for “f” function which is not practical to calculate in
parallel on either cluster or SMP system. Consider the run time measurements:
Only subtle differences are observable, one the scale of hundredth of second.

Table 2. Exectuion times for calculating π, 100000000 points

Program Number of threads Execution time

Pi — no aggregation 402653184 5589.667
Pi (tfun f) 8192 11.670 sec

Pi (no tfun) 8192 11.543 sec
Pi — C version 1 8.774 sec
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C version is produced, removing all T++ keywords from the source code by
preprocessor, which result in sequential program.

5 Granules aggregation in “Map” parallel programming
template

The “Map” high-level function is widely known concept in functional program-
ming [19]. The “Map” takes two arguments: input set and function, which has
to be applied to each element of the input set, producing the output set. Since
the operation on elements of the input set are independent from each over, par-
allelization of “Map” is straightforward. In C++, the high-level function can be
implemented with the help of template functions. In C++ Standard Template
Library(STL) it’s a “transform” template, taking input, output iterators and
function. In many cases, “Map” may be substitute for “for” loops. It is also may
be beneficial to use “Map” instead of loop, since loop parallelization in plain
T++ requires at least two loops instead of one: C++ code:

int do_something(int);
...
int res[NMAX]
for (int i=0;i<NMAX;++i)

res[i]=do_something(x[i]);

The equivalent T++ code looks like: T++ code:

tfun int do_something(int x);
...
tval int tres[i];
for (int i=0;i<NMAX;++i)

tres[i]=do_something(x[i]);
for (int i=0;i<NMAX;++i)

res[i]=tres[i]

We have implemented the “Map” template with the C++ language and T-Sim
C++ template library. It is based on ”futures” [6] approach to parallelization,
thus it’s compatible with OpenTS in many aspects. Details of this library will
be presented elsewhere. For the sake of implementation simplicity, user should
supply the “functoid” [18] object to the template. The “Map” based code for an
example above may look like the following:

int do_something(int);
...
Functoid<do_something> f;
MapD(x,x+NMAX,res,f);

The condition of speedup on parallel machine for this program is that the func-
tion do_something must constitute large enough chunk of work. But, in general
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case, it may not be sufficient to pay back amount of time, spent by runtime
support library on handling the task and data transmission. That general case
may be the simplest for the programmer to implement. However, our “Map”
template is capable aggregating individual operations, producing larger grains
and reducing the runtime overhead. Currently, programmer should supply an
extra parameter to the template, “trait” for granule aggregation. Consider the
following fragment for aggregation by the compile-time specified number:

MapA<FixedAggregation<100> >(x,x+NMAX,res,f);

The “Map” template produces granules by splitting large “transform” into lesser
ones, which constitutes library-supplied grains of parallelism. It should be noted,
that, since aggregation is done at compile time, individual do_something calls
may be inlined by compiler inside the granule loop. This enables all toolset of
optimizations, that are available for loops in modern C++ compilers.

6 Future work

It’s clear, that for the T-system, runtime overhead may be incurred not only
from the task and thread management, but from the variable mechanism as
well. Consider the following naive program to calculate N-th prime number:

// n -- desired prime number
// j -- current number
// i -- number of primes found <=j
tfun long nprimes (int n, long j, tval long i) {

tval long tmp;
tval long ni;
tmp = nprimes (n,++j,ni); // start the

bool is = is_prime(++j); //verify, if the number is prime

if (n==i) return j; // Runtime environment should cancel
// subsequent "nprimes" calls started,

else {
if (is) {

ni = ++i; // increment the number of primes found
return tmp; // return the result of subsequent calls

}
else {

ni = i; // no change, connect non-ready
return tmp;

}
}

}
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For this program to be executed effectively in parallel, runtime system should
provide “lazy” task evaluation strategy, as well as an ability to cancel tasks,
which result are not necessary. The first is existing, and the latter is a prospective
feature of OpenTS. In principle, the overhead of thread management may be
kept low with the help of “inlining” technique [3]. However, management of non-
ready variables ni and tmp may claim more CPU cycles than useful is_prime,
especially, in OpenTS, where grabage collector is present. One of future work
directions may be investigation of dynamic specialization mechanism for non-
ready variables.

7 Conclusion

Implemntation of granules aggregation technique improves a lot ease of use for
parallel programming tool. “The program mer takes on the burden of identifying
what can be computed safely in parallel, leaving the decision of exactly how the
division will take place to the run-time system.” [3] The runtime support library
may vary the “weight” of tasks in wide limits, so it capable to adapt program
to wide variety of parallel computers that exist today: multi-core, SMPs, com-
putational clusters with different kind of interconnects. At the same time, pro-
grammer may write very simple code, separating the computation code from the
code, managing computational process (scheduling, aggregation and so forth).
However, development of adaptive mechanisms, capable to measure individual
granule weight and aggregate them accordingly, is a subject of future work, as
well as attempt to provide lightweight non-ready variables.
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