
MC#: asynchronous parallel programming language
for cluster- and GRID-architectures

V.Guzev
Peoples’ Friendship University of Russia,

Moscow, Russia, e-mail: vadim@joker.botik.ru

Y.Serdyuk
Program Systems Institute of the Russian

Academy of Sciences,Pereslavl-Zalessky,Russia
e-mail: Yury@serdyuk.botik.ru

A.Chudinov
Strategy LLC,Pereslavl-Zalessky,Russia

e-mail: chudinov@strategypartner.com

Abstract

MC# is a programming language for cluster- and
GRID-architectures based on asynchronous parallel
programming model accepted in Polyphonic C# lan-
guage (N.Benton, L.Cardelli, C.Fournet; Microsoft
Research, Cambridge, UK). Asynchronous methods of
Polyphonic C# play two major roles in MC#:
1) as autonomous methods executed on remote ma-
chines, and
2) as methods used for delivering messages.
The former are identified in MC# as the ”movable
methods”, and the latter form a special syntactic class
with the elements named ”channels”. Similar to Poly-
phonic C#, chords are used for defining the channels
and as a synchronization mechanism. The MC# chan-
nels are generalised naturally to ”bidirectional chan-
nels”, which may be used both for sending and receiv-
ing messages in the movable methods.

The runtime-system of MC# has as the basic op-
eration a copying operation for the object which is
scheduled for execution on remote machine. This copy
is ”dead” after the movable method has finished its
work, and all changes of this remote copy are not
transferred to the original object. Arguments of the
movable method are copied together with an origi-
nal object, but the passing of bidirectional channels
is realised through transferring the proxies for such
channels.

By way of experiments in MC#, we have written a
series of parallel programs such as a computation of
Fibonacci numbers, walking through binary tree,

Permission to make digital or hard copies of all or
part of this work for personal or classroom use is
granted without fee provided that copies are not
made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1 Int.Workshop on C# and .NET Tech-
nologies on Algorithms, Computer Graph-
ics, Visualization, Computer Vision and Dis-
tributed Computig

February 6-8,2003, Plzen, Czech Republic.
Copyright UNION Agency - Science Press
ISBN 80-903100-3-6

computation of primes by Eratosthenes sieve, calcula-
tion of Mandelbrot set, modeling the Conway’s game
”Life”, etc. In all these cases, we got the easy readable
and compact code.

Also we have an experimental implementation in
which the compiler is written in SML.NET, and the
execution of movable methods on remote machines is
based on the Reflection library of .NET platform.

Keywords

Polyphonic C#, asynchronous parallel programming,
movable method, channel, bidirectional channel

1 Introduction

At present time, spread use of computer systems with
cluster- and GRID-architectures posed a problem of
developing high-level, powerful and flexible program-
ming languages which allow one to create complex,
but at the same time, robust applications that effec-
tively use the possibilities of concurrent computations.

The program interfaces and libraries, which we have
now, such as MPI (Message Passing Interface), that
are realised for C and Fortran languages, are very low-
level and not suited for the modern object-oriented
languages, such as C++, C# and Java.

One of the recent seminal achievment in this area
is introduction of an asynchronous parallel program-
ming model within the Polyphonic C# programming
language in the context of the Microsoft .NET plat-
form [Benton et al. 2002].In turn, this model is based
on the join-calculus [Fournet and Fessant 2002] - a
process calculus with the high-level message handling
mechanism adequately abstracting the low-level mech-
anism which exists in the current computer systems.

The essence of the new model or, in other words,
the key feature of the Polyphonic C# language is
the use of so called ”asynchronous” methods in addi-
tion to conventional synchronous methods of a class.
Such asynchronous methods can be declared both au-
tonomously, and in this case they are scheduled for
execution in a different thread (either a new one or a
working thread from some thread pool), and within a
bundle (or a chord, in terminology of Polyphonic C#)
of other methods (synchronous and asynchronous). In
the latter case, calling an asynchronous method, which

was declared in the chord, corresponds to sending a
message or posting an event.

Such parallel programming style in Polyphonic C#
as before is considered as a programming technique ei-
ther for a single computer or for many machines inter-
acting through the remote methods calls using .NET
Remoting library.

Specific features of the proposed MC# language
consist in the transferring of asynchronous parallel
programming model of Polyphonic C# to distributed
case, where an autonomous asynchronous method can
be scheduled for execution in a different machine.With
that, the asynchronous methods which are declared by
chords and are used to deliver values to synchronous
methods, form a special syntactic class with the ele-
ments named ”channels”. Therefore, a parallel pro-
gram writing in MC# language is reduced to label by
the special movable keyword the methods which may
be transferred for execution to the different processors
and arranging their interactions by the channels.

Earlier, an analogous approach in which a program-
mer has been partitioning all functions in the pro-
gram into ”movable” and ”unmovable’, used in the T-
system [Abramov and Adamovich 1999].This system
is intended for the dynamic scheduling of execution of
parallel programs written in an extension of C.

Though the channels in MC# are ”one-directional”
in their nature (same as in the join-calculus), nev-
ertheless they are generalised naturally to ”bidirec-
tional” channels which may be used by movable meth-
ods both for sending and receiving messages.

An implementation of the MC# language consists
of a compiler for translating from the input language
of a system to C#, and a runtime-system to execute a
translated program. A compiler replaces the movable
methods calls in the source program to queries to man-
ager of computational resources that schedules the ex-
ecution of parallel fragments of program in computer
system. Having received a query, a manager selects
the most suitable node of multiprocessor and copies an
object, of which the movable method is scheduled for
remote execution, to the selected node together with
the arguments of this method. This copy is ”dead” af-
ter the movable method has finished its work, and all
changes that occurred to it are not transferred to the
original object. Passing of bidirectional channels as
arguments of methods is realised through the transfer-
ring the proxies for such channels.Thus, in MC# lan-
guage, both the channels and the bidirectional chan-
nels are the local entities bounded to the place of their
declaration. In particular, this means that the pro-
grammer is responsible for effective arrangement of
communication by the channels.

As an initial stage of our work for the MC# lan-
guage, we have written in it a series of parallel algo-
rithms such as a computation of Fibonacci numbers,
walking through the binary (balanced) tree, compu-
tation of primes by Eratosthenes sieve, calculation of
Mandelbrot set, modeling the Conway’s game ”Life”,
etc. In all these cases, we got the easy readable and
compact code for the corresponding problems due to
the possibility to write parallel programs in MC#
without taking care of their actual distribution over
machines during execution. Similarly, there is no
need for the manual programming in MC# of ob-
ject (data) serialization in order to transfer these ob-

jects to remote processors (in contrast to MPI, where
a special code is needed for a given problem) - the
runtime-system of MC# performs an object serializa-
tion/deserialization automatically.

2 Asynchronous model of Polyphonic
C# and its distributed variant

In C#, conventional methods are synchronous: the
caller waits until the method called is completed, and
then continues its work. In the world of parallel com-
putations, reduction of execution time of a program is
achieved by transferring some methods for execution
in different processors, after that a program which
transferred these methods immediately proceeds to
the next instructions.

In Polyphonic C#, methods that commonly are
scheduled for execution in the different threads within
single computer are called asynchronous and they are
declared by using the async keyword :
async Compute (int n) {

// method body
}

The specifics of these methods is that their call com-
pletes essentially immediately; they never return the
result; autonomous asynchronous methods always are
scheduled for execution in a different thread (either
a new one spawned to execute this call, or a working
thread from some pool). In general case, asynchronous
methods are defined using chords. A chord consists of
a header and a body, where the header is a set of
method declarations separated by the ”&” symbol :
int Get() & async c (int x) { return (x); }

The body of a chord is only executed once all the
methods from chord header have been called. The
single method calls are queued up until they aren’t
matched with the header of some chord.

In any chord, at most one method may be syn-
chronous. Just in the thread associated with this
method, the body of the chord is executed, and the
returned value of it becomes a returned value of syn-
chronous method.

In MC#, autonomous asynchronous methods al-
ways are scheduled for execution in a different pro-
cessor, and they are declared by using the movable
keyword. The main peculiarity of movable method
call for some object consists in that the object itself
is only copied (but not moved) to remote processor
jointly with the movable method and input data for
the latter. As a consequence, all changes of internal
variables of the object are performed over variables of
the copy and have no influence on the original object.
So, the execution of the program
class B {

public int x;
public B () {}
movable Compute () { x = 2; }

}
class A {

public static void Main(String [] args){
B b = new B(); b.x = 1;
Console.WriteLine(”Before:x=”+b.x);

b.Compute();
Console.WriteLine(”After:x=”+b.x);

}
}
gives
Before:x=1
After:x=1

In MC#, asynchronous methods, which are defined
in the chords, are marked by using the Channel key-
word. And the only synchronous method from the
chord plays the role of the method that receives val-
ues from the channel:
int Get () & Channel c (int x) { return (x); }

By the rules of correct definition, channels may
not have a static modifier, and so they always are
bounded to some object. Thus, we we may send a
value by a.c (10), where a is an object of some class
in which the channel c is defined. Also, as any object
in a program, a channel may be passed as argument
to some method :

movable Compute (Channel c) {
// method body

}
Thus, a Channel type plays the role of additional
type for the type system of C#.

As in Polyphonic C#, it is also possible to declare a
few channels in the single chord with the aim of their
synchronization:

int Get() & Channel c1(int x) & Channel c2(int
y){return (x + y); }
The calling of Get method will return a sum only after
receiving both arguments by the channels c1 and c2.

3 Examples of programming in MC#

Let’s consider a simple problem of computing the n-
th (n≥0) Fibonacci number. The main computational
procedure Compute of our program should compute
the n-th Fibonacci number and return it by the given
channel. With the assumption that the above pro-
cedure must be executed on a remote processor, we
define it as a movable method:
class Fib {

public movable Compute (int n,Channel c) {
if (n < 2) c (1);
else {
Compute (n - 1, c1);
Compute (n - 2, c2);
c (Get2 ());
}

}
int Get2() & Channel c1 (int x)

& Channel c2 (int y) {
return (x + y);

}
}

The main program may be the following :
class ComputeFib {

public static void Main(String[] args){
int n=System.Convert.ToInt32 (args[0]);
ComputeFib cf = new ComputeFib();
Fib fib = new Fib();
fib.Compute (n, cf.c);

Console.WriteLine(”n=”+n+”result=”+cf.Get());
}
public int Get() & Channel c (int x){

return (x);

}
}
The above program has an essential shortcoming - an
execution of any call of movable method comprises
very few operations. And the effect of parallel exe-
cution will be decreased by the overhead charges to
transport it in a different processor. A more effective
variant for parallel execution is given below:
class Fib {

public movable Compute(int n,Channel c){
if (n < 20) c (cfib (n));
else {
Compute (n - 1, c1);
c (cfib (n - 2) + Get());
}

}
int Get() & Channel c1 (int x){

return (x);
}
int cfib (int n) {

if (n < 2) return (1);
else return (cfib(n-1) + cfib (n-2));

}
}

Bidirectional channels

If some method got the channel as the argument, then
it may send some values by the channel.And then how
can we receive messages from this channel - if the cor-
responding method is ”left” in the object where the
channel was defined ? We may overcome this diffi-
culty as proposed in [Fournet and Fessant 2002]. A
programmer must ”wrap up” a chord, in which the
channel is defined, by the class with the name BD-
Channel (Bi-Directional Channel) fixed in MC#.

For convenience, public methods for sending and
receiving messages for a given channel may be defined
in this class.If it is intended to use a few bidirectional
channels with the different types, then all of them
must be defined in one BDChannel class. This is an
example of a simple BDChannel class:
public class BDChannel {

public BDChannel () {}
private int Get() & private Channel c (int x){

return (x);
}
public void send (int x) { c (x); }
public int receive () { Get(); }

}
Now, having such a class, we can create the corre-
sponding objects and pass them as arguments to other
methods, in particular, to movable methods.

Bidirectional channels turn out a convenient fea-
ture in the parallel program for constructing primes
by the Eratosthenes sieve. Given a natural number
N, we need to enumerate all primes from 2 to N. Main
computational procedure Sieve have two arguments:
input channel in for receiving integers, and output
channel out for producing primes extracted from the
input stream. The end marker in both streams is -1.
A part of the main method for given program is:
Main (String [] args) {

int N=System.Convert.ToInt32 (args[0]);
BDChannel nats = new BDChannel();
BDChannel primes = new BDChannel();

Sieve (nats, primes);
for (int i=2; i <= N; i++) nats.send (i);
nats.send (-1);
while ((int p=primes.receive()) != -1)

Console.WriteLine (p);
}
The Sieve method uses a function filter (int x, BD-
Channel in, BDChannel out), that sends integers not
divisible by x , from in to out :
mobable Sieve (BDChannel in, BDChannel out){

int head = in.receive();
if (head == -1) out.send (-1);
else {

out.send (head);
BDChannel inter = new BDChannel();
Sieve (inter, out);
filter (head, in, inter);

}
}
It is possible to write a more effective variant for paral-
lel execution, where a function filter handles an input
stream in not by single prime x, but by each of the
primes x1, ..., xn from the package. In this case, bidi-
rectional channels transfer packages of integers, where
the package size is regulated by the programmer.

4 Implementation

As usual, for any parallel programming language, an
implementation of MC# consists of a compiler and
a runtime-system. The main functional parts of the
runtime-system are:

1)Manager - a process running on the central node
and distributing movable methods over the nodes.

2)WorkNode - a process running on each working
node and controlling execution of movable methods
transferred to given node.

3)Communicator - a process running on each
node and responsible for receiving the channel mes-
sages for objects located on given node.
A compiler translates a program from MC# to C#,
and its main purpose is to create code realising:
1)execution of movable methods in other processors,
2)transferring the channel messages and 3)synchro-
nization defined in the chords. These functions are
provided by the corresponding methods of classes of
the runtime-system. Among these classes are:

1)Session class - provides for computational ses-
sion;

2)TCP class - provides for sending both queries for
movable methods execution and channel messages;

3)Serialization class - provides for serialization/
deserialization of objects that are transferred to the
remote machines;

4)Channel class - contains information about the
channel;

5)LocalHost class - contains information about
the local node.

The main functions of MC#-compiler:
1. Adds the calls to functions Init() and Finalize()

of the class Session to the main method of the pro-
gram. Function Init() distributes the executable mod-
ule to the remote machines, starts a Manager pro-
cess, creates a LocalNode object and others. Func-
tion Finalize() stops the running threads and com-
pletes a computational session.

2. Adds an extra parameter LocalHost to each con-
structor of each object; it contains an information
needed to create channels defined for a given object.

3. Adds the statements for creation of Channel
objects for all channels defined in the program.

4. Replaces the calls to movable methods by the
queries to Manager of computational resources.

5. Replaces the calls to channels by sending corre-
sponding messages by TCP- connection.
Translating of chords, containing channel definitions,
is conducted in the same way as in Polyphonic C#.

Passing of bidirectional channels as arguments of
movable methods is implemented via creation and
passing of proxies for these channels. To send a mes-
sage from a remote machine, proxy sends this mes-
sage over the TCP-connection to the node to which
the original bidirectional channel is bounded. To re-
ceive a message on remote machine, the corresponding
query is forwarded to the machine with the original
channel, and the thread which issued this command is
blocked until a reply message is received. A blocking
mechanism is similar to one in Polyphonic C# that is
used to handle the thread queues there.

The above implementation is a prototype one, so
we use a simple decentralized approach to distribute
computational resources amongst movable methods.

5 Conclusion

A distributed variant of an asynchronous parallel
programming model of Polyphonic C# was demon-
strated in the given work. The key notions of our ap-
proach are the movable methods and channels. One-
directionality of the channels is overcome by explicit
introduction of ”bidirectional” channels.

Experiments with the prototype implementation
demonstrate the easy readability, compactness and
satisfactory effectiveness of program code in MC#.

Further lines of our work are to refine the type sys-
tem for common and bidirectional channels and to
test a decentralized distribution of computational re-
sources in order to increase effectiveness of the whole
system.

Acknowledgements

The authors wish to thank S. Abramov (PSI RAS,
Russia) for his support of current work.

References

Abramov, S., and Adamovich, A. 1999. T-system:
a programming environment with support of au-
tomatic dynamic parallelizing of programs (in rus-
sian). In Program systems: Theor. found. and appl.,
Ed. A.C.Ailamazyan, Moscow, 1999, 201–213.

Benton, N., Cardelli, L., and Fournet, C. 2002.
Modern concurrency abstractions for c#. To appear
in ACM Trans. on Prog. Lang. and Systems .

Fournet, C., and Fessant, F. L. 2002. Jocaml,
a language for concurrent, distributed and mobile
programming. In Proc. of the 4th Summer School
on Adv. Funct. Progr., Oxford, 19-24 August 2002.

